Skip Navigation Links
Journal of Vibration Testing and System Dynamics

C. Steve Suh (editor), Pawel Olejnik (editor),

Xianguo Tuo (editor)

Pawel Olejnik (editor)

Lodz University of Technology, Poland

Email: pawel.olejnik@p.lodz.pl

C. Steve Suh (editor)

Texas A&M University, USA

Email: ssuh@tamu.edu

Xiangguo Tuo (editor)

Sichuan University of Science and Engineering, China

Email: tuoxianguo@suse.edu.cn


Control Analysis and Function Projective Anti-Synchronization between Time-Delay Chaotic Systems

Journal of Vibration Testing and System Dynamics 10(2) (2026) 147--159 | DOI:10.5890/JVTSD.2026.06.004

Vijay K. Shukla$^{1,2}$, Mahesh C. Joshi$^{2}$, Ajit K. Singh$^{3}$

$^{1}$ Department of Mathematics, Shiv Harsh Kisan P.G. College, Basti-272001, India

$^{2}$ Department of Mathematics, D.S.B. Campus, Kumaun University, Nainital-263001, Uttarakhand, India

$^{3}$ School of Technology Management and Engineering, SVKM's Narsee Monjee Institute of Management Studies, Indore, Madhya Pradesh-453112, India

Download Full Text PDF

 

Abstract

Chaos analysis and its control are essential issues in nonlinear dynamics due to their extensive applications in several domains. In order to analyze chaotic system, this article examines two control strategies such as passive control and linear feedback control. To assess system stability, dynamical stability is analyzed by using Lyapunov stability theory. Passive and linear feedback control procedures are utilized to examine the stable state of state vector of chaotic system. Further, generalized function projective anti-synchronization is explored to analyze time-delay chaotic systems. Theoretical analysis and numerical findings demonstrate the efficacy of present methods.

References

  1. [1]  Klages, R. (2007), Chaos: a very short introduction, Journal of Physics A: Mathematical and Theoretical, 40(29), 8604-8605.
  2. [2]  Skiadas, C.H. and Skiadas, C. (2017), Handbook of Applications of Chaos Theory, CRC Press.
  3. [3]  Paul, D. and Charney, D. (1995), Introducing chaos (theory) into science and engineering: effects of rhetorical strategies on scientific readers, Written Communication, 12(4), 396-438.
  4. [4]  Shukla, V.K., Joshi, M.C., Fekih, A., and Mishra, P.K. (2024), Study of finite-time synchronization between memristive neural networks with leakage and mixed delays, International Journal of Dynamics and Control, 12, 1541-1553.
  5. [5]  Shukla, V.K., Joshi, M.C., Mishra, P.K., Mousavi, Y., Zadeh, M.R., and Fekih, A. (2025), Predefined synchronization of mixed and leakage-delayed quaternion-valued neural network, International Journal of Dynamics and Control, 13, 51.
  6. [6]  Moon, S., Seo, J.M., Han, B.S., Park, J., and Baik, J.J. (2019), A physically extended Lorenz system, Chaos: An Interdisciplinary Journal of Nonlinear Science, 29(6), 063129.
  7. [7]  Lorenz, E.N. (1963), Deterministic nonperiodic flow, Journal of Atmospheric Sciences, 20(2), 130-141.
  8. [8]  Shukla, V.K., Kumar, A., and Mishra, P.K. (2023), Chaos synchronization of complex chaotic systems via nonlinear control method, AIP Conference Proceedings, 2819(1), 1-13.
  9. [9]  Chang, J.F., Hung, M.L., Yang, Y.S., Liao, T.L., and Yan, J.J. (2008), Controlling chaos of the family of Rössler systems using sliding mode control, Chaos, Solitons and Fractals, 37(2), 609-622.
  10. [10]  Emiroğlu, S. and Uyaroğlu, Y. (2010), Control of Rabinovich chaotic system based on passive control, Scientific Research and Essays, 5(21), 3298-3305.
  11. [11]  Boccaletti, S. and Arecchi, F.T. (1995), Adaptive control of chaos, Europhysics Letters, 31(3), 127.
  12. [12]  Effati, S., Saberi-Nadjafi, J., and Nik, H.S. (2014), Optimal and adaptive control for a kind of 3D chaotic and 4D hyper-chaotic systems, Applied Mathematical Modelling, 38(2), 759-774.
  13. [13]  Vincent, T.L. and Yu, J. (1991), Control of a chaotic system, Dynamics and Control, 1(1), 35-52.
  14. [14]  Li, Y., Chen, G., and Tang, W.K.S. (2005), Controlling a unified chaotic system to hyperchaotic, IEEE Transactions on Circuits and Systems II: Express Briefs, 52(4), 204-207.
  15. [15]  Marwan, M., Ahmad, S., Aqeel, M., and Sabir, M. (2019), Control analysis of rucklidge chaotic system, Journal of Dynamic Systems, Measurement, and Control, 141(4), 041010.
  16. [16]  Iqbal, J., Ahmad, S., Marwan, M., and Shaukat, M. (2020), Control and numerical analysis for cancer chaotic system, Archive of Applied Mechanics, 90, 2597-2608.
  17. [17]  Tian, H., Wang, Z., Zhang, P., Chen, M., and Wang, Y. (2021), Dynamic analysis and robust control of a chaotic system with hidden attractor, Complexity, 2021(1), 8865522.
  18. [18]  Din, Q. (2019), Stability, bifurcation analysis and chaos control for a predator-prey system, Journal of Vibration and Control, 25(3), 612-626.
  19. [19]  Zhang, J. and Tang, W. (2009), Analysis and control for a new chaotic system via piecewise linear feedback, Chaos, Solitons and Fractals, 42(4), 2181-2190.
  20. [20]  Du, H., Zeng, Q., and Wang, C. (2008), Function projective synchronization of different chaotic systems with uncertain parameters, Physics Letters A, 372(33), 5402-5410.
  21. [21]  Wu, X.J., Wang, H., and Lu, H.T. (2011), Hyperchaotic secure communication via generalized function projective synchronization, Nonlinear Analysis: Real World Applications, 12(2), 1288-1299.
  22. [22]  Yu, Y. and Li, H.X. (2010), Adaptive generalized function projective synchronization of uncertain chaotic systems, Nonlinear Analysis: Real World Applications, 11(4), 2456-2464.
  23. [23]  Zhou, P. and Zhu, W. (2011), Function projective synchronization for fractional-order chaotic systems, Nonlinear Analysis: Real World Applications, 12(2), 811-816.
  24. [24]  Xu, X. (2011), Generalized function projective synchronization of chaotic systems for secure communication, EURASIP Journal on Advances in Signal Processing, 2011, 1-11.
  25. [25]  Wang, C., Zhang, H.L., Fan, W.H., and Ma, P. (2020), Finite-time function projective synchronization control method for chaotic wind power systems, Chaos, Solitons and Fractals, 135, 109756.
  26. [26]  Ouannas, A., Azar, A.T., and Ziar, T. (2020), On inverse full state hybrid function projective synchronization for continuous-time chaotic dynamical systems with arbitrary dimensions, Differential Equations and Dynamical Systems, 28(4), 1045-1058.
  27. [27]  Shukla, V.K., Joshi, M.C., Rajchakit, G., Chakrabarti, P., Jirawattanapanit, A., and Mishra, P.K. (2023), Study of generalized synchronization and anti-synchronization between different dimensional fractional-order chaotic systems with uncertainties, Differential Equations and Dynamical Systems, https://doi.org/10.1007/ s12591-023-00653-y.
  28. [28]  Xiao, W., Min, F., Li, H., and Shi, W. (2024), Complex motion behavior and synchronization analysis of heterogeneous neural network, IEEE Transactions on Circuits and Systems I, 1-10.
  29. [29]  Lai, Q., Akgul, A., Li, C., Xu, G., and Çavuşoğlu, Ü. (2017), A new chaotic system with multiple attractors: dynamic analysis, circuit realization and S-Box design, Entropy, 20(1), 12.
  30. [30]  Wu, X.J., Liu, J.S., and Chen, G.R. (2008), Chaos synchronization of Rikitake chaotic attractor using the passive control technique, Nonlinear Dynamics, 53(1), 45-53.
  31. [31]  Wang, Y., Leng, X., Zhang, C., and Du, B. (2023), Adaptive fast image encryption algorithm based on three-dimensional chaotic system, Entropy, 25(10), 1399.
  32. [32]  El-Dessoky, M.M., Alzahrani, E., and Al-Rehily, N. (2021), Control and adaptive modified function projective synchronization of a new hyperchaotic system, Alexandria Engineering Journal, 60(4), 3985-3990.
  33. [33]  He, J. and Pei, L. (2023), Dual function matrix projective synchronization for fractional-order hyperchaotic systems, Journal of Computational and Nonlinear Dynamics, 18(9), 091002.
  34. [34]  Shukla, V.K., Joshi, M.C., Mishra, P.K., and Xu, C. (2024), Mechanical analysis and function matrix projective synchronization of El-Nino chaotic system, Physica Scripta, 100(1), 015255.
  35. [35]  Zhong, S.Y., Zhou, Z.G., and Lian, Q.D. (2006), Passive control of chaotic system with multiple strange attractors, Chinese Physics, 15(10), 1-5.