Skip Navigation Links
Journal of Vibration Testing and System Dynamics

C. Steve Suh (editor), Pawel Olejnik (editor),

Xianguo Tuo (editor)

Pawel Olejnik (editor)

Lodz University of Technology, Poland


C. Steve Suh (editor)

Texas A&M University, USA


Xiangguo Tuo (editor)

Sichuan University of Science and Engineering, China


Louise Petr'{e}n -- A Mathematician Whose Work Waited for a Century to Be Appreciatedfootnote{The article is accepted for publication in the journal of mathematical societies of Moscow, St. Petersburg and Nizhny Novgorod ``Mathematics in Higher Education'', No. 18, 2020. Translated from Russian by professor O.V. Petrova.}

Journal of Vibration Testing and System Dynamics 5(3) (2021) 221--232 | DOI:10.5890/JVTSD.2021.09.002

Inna S. Emelyanova

Campbell, California, USA

Download Full Text PDF



Louise Petr\'{e}n (Hedvig Louise Beata Petr\'{e}n-Overton, 1880-1977) was the first Swedish woman to defend her doctoral thesis in mathematics in 1911. It took nearly a hundred years for her thesis to be duly appreciated.


  1. [1]  Grevholm, B. (2002), Louise P\{etren, the first woman in Sweden to win a doctorate in mathematics}, Women and mathematics: conference on 12-14 April. 2002: conference report. - 2004. Kristianstad. p. 71-82. (in Swedish: Grevkholm, Barbro. Louise Petr\{en, f\"{o}rsta kvinnan i Sverige som er\"{o}vrade doktorsgrad i matematik}).
  2. [2]  Haikola, L. (2006), Louise Petr\{en-Overton, min mormor}. P. 5-7; Louise Petr\{en- Overton, my grandmother}. p. 8-9, Archives of ALGA. ALGA Publications. Blekinge Institute of Technology. Karlskrona, Sweden. Volume 3.
  3. [3]  Perouansky, M. (2015), {The Overton in Meyer--Overton: a biographical sketch commemorating the 150th anniversary of Charles Ernest Overtons birth}, British Journal of Anaesthesia, 114(4), p. 537--541.
  4. [4]  {}
  5. [5]  Louise, P. (1911), Extension of Laplace`s method to the equations $\sum_{i=0}^{n-1} {A_{1i} } (x,y)\frac{\partial ^{i+1}z}{\partial x\partial y^i}+\sum_{i=0}^n {A_{0i} } (x,y)\frac{\partial ^iz}{\partial y^i}=0.$ Lunds Universitets Arsskrift. N.F. Afd. 2 Bd. 7. Nr. 3. S. 1-165. Kongl. Fysiografiska S\"{a}llskapets Handlingar. N.F. Bd. 22. Nr. 3. Imorimerie H\"{a}kan Ohlsson. Lund 1911.
  6. [6] Archives of ALGA. (2006), ALGA Publications, Blekinge Institute of Technology, Karlskrona, Sweden. Volume 3, p. 3--31.
  7. [7]  P Laura, P. (1905), {Sulla estensione del metodo di Laplace alle equazioni differenziali lineari di ordine qualunque con due variabili indipendenti}, Rendiconti del Circolo Matemmatico di Palermo, T. 20, p. 344--374.
  8. [8] Ibragimov, N.H. (2006), A Practical Course in Differential Equations and Mathematical Modelling, ALGA Publications. Blekinge Institute of Technology. Karskrona, Sweden. Third Edition. 370 p.
  9. [9] Ibragimov, N.H. (2004), Equivalence groups and invariants of linear and non-linear equations, Archives of ALGA, ALGA Publications, Blekinge Institute of Technology, Karlskrona, Sweden. Volume 1, p. 9-65.
  10. [10] Ibragimov, N.H. (2004), {Invariants of Hyperbolic Equations: Solution of the Laplace Problem}, Journal of Applied Mechanics and Technical Physics, Volume 45, Issue 2, p. 158-166.
  11. [11] Tsarev, S.P. (2009), Factorization of Linear Systems, P. 111-131 as the chapter of book ``Algebraic Theory of Differential Equations / Edited by M. Maccallum and A. Mikhailov. Cambridge University Press, 248 p.
  12. [12] Ganzha, E.I. Euler integrals and multi-integrals of linear partial differential equations, Mathematical Notes, 89(\ref{eq1}) p. 37-50.
  13. [13] Ganzha, E.I. and Tsarev, S.P. (2007), Classical methods of integrating of hyperbolic systems and equations of the second order / Textbook. Krasnoyarsk State Pedagogical University named after V.P. Astafiev. --- Krasnoyarsk, 118 p. (in Russian).
  14. [14] Swedish Biographical Dictionary, {}.
  15. [15] Lars, G. (1998), Mathematics and mathematicians. Mathematics in Sweden before 1950. History of mathematics, Vol. 13, AMS, Translated from the Swedish by Lars Garding.