Skip Navigation Links
Journal of Vibration Testing and System Dynamics

C. Steve Suh (editor), Pawel Olejnik (editor),

Xianguo Tuo (editor)

Pawel Olejnik (editor)

Lodz University of Technology, Poland


C. Steve Suh (editor)

Texas A&M University, USA


Xiangguo Tuo (editor)

Sichuan University of Science and Engineering, China


Study of Routes to Chaos in Vibroimpact System with Continuous Wavelet Transform

Journal of Vcibration Testing and System Dynamics 3(3) (2019) 281--296 | DOI:10.5890/JVTSD.2019.09.003

V. A. Bazhenov, O. S. Pogorelova, T. G. Postnikova

Kyiv National University of Construction and Architecture, 31, Povitroflotskiy avenu, Kyiv, Ukraine

Download Full Text PDF



The study of dynamical systems chaotic behavior and their routes to chaos was in particular attention at recent years. These phenomena study in non-smooth dynamical system is of the special scientists’ interest. We apply the Continuous Wavelet Transform (hereinafter - CWT) to investigate the intermittent route to chaos, boundary crisis, and transitional regimes under quasi-periodic route to chaos in strongly nonlinear non-smooth discontinuous 2-DOF vibroimpact system. We show that CWT application is very useful to observe the intermittency, chaos and transitional regimes. It allows one to detect and to determine these phenomena with great confidence, reliability, and clearness.


  1. [1]  Moon, F.C. (1987), Chaotic vibrations: an introduction for applied scientists and engineers, New York,Wiley.
  2. [2]  Thompson, J.M.T. and Stewart, H.B. (2002), Nonlinear dynamics and chaos, John Wiley & Sons.
  3. [3]  Kuznetsov, S.P. (2006), Dynamical chaos, Moscow: Fizmatlit.
  4. [4]  Schuster, H.G. (1988), Deterministic Chaos: An Introduction, Physik-Verlag GmbH.
  5. [5]  Grebogi, C., Ott, E., and Yorke, J.A. (1983), Crises, sudden changes in chaotic attractors, and transient chaos, Physica D: Nonlinear Phenomena, 7(1-3), 181-200.
  6. [6]  Ananthkrishnan, N. and Sahai, T. (2001), Crises-Critical Junctures in the Life of a Chaotic Attractor, Resonance, 6(3), 19-33.
  7. [7]  Nayfeh, A.H. and Balachandran, B. (2008), Applied nonlinear dynamics: analytical, computational, and experimental methods, John Wiley & Sons.
  8. [8]  Hilborn, R.C. (2000), Chaos and nonlinear dynamics: an introduction for scientists and engineers, Oxford University Press on Demand.
  9. [9]  Bazhenov, V.A., Pogorelova, O.S., and Postnikova, T.G. (2017), Stability and Discontinious Bifurcations in Vibroimpact System: Numerical investigations, LAP LAMBERT Academic Publ. GmbH and Co. KG Dudweiler, Germany.
  10. [10]  Bazhenov, V.A., Lizunov, P.P., Pogorelova, O.S., Postnikova, T.G., and Otrashevskaia, V.V. (2015), Stability and bifurcations analysis for 2-DOF vibroimpact system by parameter continuation method. Part I: loading curve, Journal of Applied Nonlinear Dynamics, 4(4), 357-370.
  11. [11]  Bazhenov, V.A., Lizunov, P.P., Pogorelova, O.S., and Postnikova, T.G. (2016), Numerical bifurcation analysis of discontinuous 2-dof vibroimpact system. Part 2: frequency-amplitude response, Journal of Applied Nonlinear Dynamics, 5(3), 269-281.
  12. [12]  Bazhenov, V.A., Pogorelova O.S., and Postnikova, T.G. (2019), Breakup of closed curve – quasi-periodic route to chaos in vibroimpact system, Discontinuity, Nonlinearity and Complexity, 8(3), 275-288.
  13. [13]  Bazhenov, V.A., Pogorelova, O.S., and Postnikova, T.G. (2019), Quasi-periodic Route to Transient Chaos in Vibroimpact System, Chapter into Book: Nonlinear Dynamics, Chaos, and Complexity I: In Memory of Valentin Afraimovich (1945-2018), Higher Education Press.
  14. [14]  Bazhenov, V.A., Pogorelova, O.S., and Postnikova, T.G. (2019), Intermittent and quasi-periodic routes to chaos in Vibroimpact System: Numerical simulations, LAP LAMBERT Academic Publ. GmbH and Co. KG Dudweiler, Germany.
  15. [15]  Pomeau, Y. and Manneville, P. (1980), Intermittent transition to turbulence in dissipative dynamical systems, Communications in Mathematical Physics, 74(2), 189-197.
  16. [16]  Polikar, R. (1996), The wavelet tutorial, Ames, Jowa.
  17. [17]  Chui, C.K. (1992), Wavelets: a tutorial in theory and applications, First and Second Volume of Wavelet Analysis and Its Applications.
  18. [18]  Daubechies, I. (1992), Ten lectures on wavelets, Siam, 61.
  19. [19]  Astafieva, N.M. (1996), Wavelet analysis: basic theory and some applications, Uspekhi fizicheskikh nauk, 166(11), 1145-1170.
  20. [20]
  21. [21]  Bazhenov, V.A., Pogorelova O.S., and Postnikova, T.G. (2018), Intermittent transition to chaos in vibroimpact system, Journal Applied Mathematics and Nonlinear Sciences, 3(2), 475-486.
  22. [22]  Murguía, J.S. et al. (2018),Wavelet characterization of hyper-chaotic time series, Revista Mexicana de Física, 64(3), 283-290.
  23. [23]  Murguia, J.S. and Campos-Cantón, E. (2006), Wavelet analysis of chaotic time series, Revista mexicana de física, 52(2), 155-162.
  24. [24]  Rubežić, V., Djurović, I., and Sejdić, E. (2017), Average wavelet coefficient-based detection of chaos in oscillatory circuits, COMPEL-The international journal for computation and mathematics in electrical and electronic engineering, 36(1), 188-201.
  25. [25]  Prokoph, A. and Barthelmes, F. (1996), Detection of nonstationarities in geological time series: wavelet transform of chaotic and cyclic sequences, Computers & Geosciences, 22(10), 1097-1108.
  26. [26]  Xu, G.S., Wan, B.N., and Zhang W. (2006), Application of wavelet multiresolution analysis to the study of self-similarity and intermittency of plasma turbulence, Review of scientific instruments, 77(8), 083505.
  27. [27]  Afonin, V.V. and Boletskaya, T.K. (2011), Exploatation of Wavelet analysis for investigation of intermittency in dynamical nonlinear systems, Vestnik Novosibirsk State University. Physics, 6(2). (in Russian)
  28. [28]  Afonin, V.V. and Boletskaya, T.K. (2011), Wavelet -analysis of II and III type intermittency, Nonlinear Dynamics, 7(3), 427-436. (in Russian)
  29. [29]  Koronovskii, A.A., and Khramov, A.E. (2001), An effective wavelet analysis of the transition to chaos via intermittency, Technical Physics Letters, 27(1), 1-5. (in Russian)
  30. [30]  Krysko, A.V., Zhigalov, M.V., Soldatov, V.V., and Podturkin, M.N. (2009), The best wavelet selection at the nonlinear flexible beams vibrations analysis with transversal displacement, Bulletin of the Saratov State Technical University, 3(1).
  31. [31]  Afraimovich, V.S. and Shilnikov, L.P. (1991), Invariant two-dimensional tori, their breakdown and stochasticity, Amer. Math. Soc. Transl, 149(2), 201-212.
  32. [32]  Verhulst, F. (2016), Torus break-down and bifurcations in coupled oscillators, Procedia IUTAM, 19, 5-10.
  33. [33]  Relle, D. and Takens, F. (1971), On the nature of turbulence, Les rencontres physiciens-mathématiciens de Strasbourg-RCP25, 12, 1-44.
  34. [34]  Feder, J. (1988), Fractals. Department of Physics, University of Oslo.