Skip Navigation Links
Journal of Vibration Testing and System Dynamics

C. Steve Suh (editor), Pawel Olejnik (editor),

Xianguo Tuo (editor)

Pawel Olejnik (editor)

Lodz University of Technology, Poland


C. Steve Suh (editor)

Texas A&M University, USA


Xiangguo Tuo (editor)

Sichuan University of Science and Engineering, China


A New Application of the Normal Form Description to a N-Dimensional Dynamical Systems Attending the Conditions of a Hopf Bifurcation

Journal of Vcibration Testing and System Dynamics 2(3) (2018) 249--256 | DOI:10.5890/JVTSD.2018.09.005

Vinícius B. Silva$^{1}$; João P. Vieira$^{2}$; Edson D. Leonel$^{1}$,$^{3}$

$^{1}$ Departamento de Física, UNESP - Universidade Estadual Paulista, Av. 24A, 1515 - Bela Vista, 13506-900, Rio Claro, SP, Brazil

$^{2}$ Departamento de Matemática, UNESP - Universidade Estadual Paulista, Av. 24A, 1515 - Bela Vista, 13506-900, Rio Claro, SP, Brazil

$^{3}$ Abdus Salam International Center for Theoretical Physics, Strada Costiera 11, 34151 Trieste, Italy

Download Full Text PDF



In this paper we prove the following theorem: consider a N-dimensional dynamical system that is reduced to its center manifold. If it is proved the system satisfies the conditions of a Hopf bifurcation theorem then the original system of differential equations escribing the dynamics can be rewritten in a simpler analytical expression that preserves the phase space topology. The theorem proposed and proven effectively reduces the work done to obtain the normal form for the class of dynamical systems with the ccurrence of Hopf bifurcation.


V.B.S. acknowledges FAPESP (2015/23142-0) for nancial support. EDL acknowledges support from CNPq (303707/2015-1) and FAPESP (2012/23688-5). The authors acknowledge fruitful discussions with Professor João Paulo Cerri.


  1. [1]  Betancur, H.A. (2010), Bifurcaciones Básicas y Formas Normales, Universidad Nacional de Colombia: Colombia.
  2. [2]  Verri, A.J. (2013), Estabilidade Global e Bifurcação de Hopf em um modelo de HIV baseado em Sistemas do Tipo Lotka-Volterra, Universidade Estadual Paulista: Rio Claro.
  3. [3]  Chow, S.N., Drachman, B., and Wang, D. (1990), Computation of normal forms, Journal of Computation and Applied Mathematics, 29, 129-143.
  4. [4]  Altman, E.J. (1993), Normal form analysis of Chua's circuit with applications for trajectory recognition, IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, 40, 675-682.
  5. [5]  Cushman, R. and Sanders, J. (1987), Splitting Algorithm for Nilpotent Normal form, MSI Cornell Univ.: New York.
  6. [6]  Marsden, J.E. and McCracken, M. (1976), The Hopf bifurcation and its applications, Springer-Verlag: New York.
  7. [7]  Monteiro, L.H. (2002), Sistemas dinâmicos, Livraria da Física: Rio de Janeiro.
  8. [8]  Kuznetsov, Y.A. (1998), Elements of applied bifurcation theory, Springer: New York.