Skip Navigation Links
Journal of Vibration Testing and System Dynamics

C. Steve Suh (editor), Pawel Olejnik (editor),

Xianguo Tuo (editor)

Pawel Olejnik (editor)

Lodz University of Technology, Poland


C. Steve Suh (editor)

Texas A&M University, USA


Xiangguo Tuo (editor)

Sichuan University of Science and Engineering, China


Mathematical Framework and Non-Linear Modeling of the Mechanical System. Part I: Rigid Body Kinematics

Journal of Vibration Testing and System Dynamics 1(3) (2017) 267--280 | DOI:10.5890/JVTSD.2017.09.006

S. Haddout; M. Rhazi; S.E. Faik; A. Soukri

$^{1}$ Department of Physics, Faculty of Science, Ibn Tofail University, B.P 242, 14000 Kenitra, Morocco

$^{2}$ Department of Physics, Ecole Normale Sup´erieure, B.P 2400, 40000 Marrakech, Morocco

Download Full Text PDF



In the present paper, a problem of a free rigid body motion in mechanical system is analyzed from a video capture webcam (Sony Cybershot 10.1 M.P). The problem subjected to kinematic characteristics and relative trajectories are theoretically and analytically solved. Subsequently, the solution is quantitatively verified by a new experiment procedure, constructed by the authors. The geometrical treatments of the absolute experimental trajectories of two points of the body, allow determining the relative trajectory of a point from the other point. The kinematic parameters optimization, i.e., translational velocity, instantaneous velocity of rotation and initial kinematic conditions, are obtained, solving non-linear least-squares problems, based on Levenberg-Marquardt’s algorithm. On the other hand, the response surfaces of the objective function and the sensitivity analysis of the different initial estimates of the analytical model parameters are also discussed. The comparison of the theoretical study results with experimental output shows that there are instruments to directly verify rather abstract mathematical theories even on the general mechanics program. Moreover, combining the theoretical description of the problem with an appropriate laboratory experiment and computational optimization procedures, gives a more exhaustive view of the physical problem as a whole.


  1. [1]  Aruldhas, G. (2008), Classical Mechanics, PHI Learning Pvt. Ltd.
  2. [2]  Bullo, F. and Lewis, A.D. (2004), Geometric Control of Mechanical Systems, Springer Verlag, New York, Heidelberg, Berlin.
  3. [3]  Cardin, F. and Favreti, M. (1996), On nonholonomic and vakonomic dynamics of mechanical systems with nonintegrable constraints, J. Geom. Phys., 18, 295-325.
  4. [4]  Carinena, J.F. and Ranada, M.F. (1993), Lagrangian systems with constraints: a geometric approach to the method of Lagrange multipliers, J. Phys. A: Math. Gen. 26, 1335-1351.
  5. [5]  Cortés, J., de León M, Marrero, J.C., and Martínez, E. (2009), Nonholonomic Lagrangian systems on Lie algebroids, Discrete Contin. Dyn. Syst. A 24, 213-271.
  6. [6]  De León, M., Marrero, J.C., and de Diego, D.M. (1997), Non-holonomic Lagrangian systems in jet manifolds. J. Phys. A: Math. Gen., 30, 1167-1190.
  7. [7]  De León, M., Marrero, J.C., and de Diego, DM. (1997), Mechanical systems with nonlinear constraints, Int. Journ. Theor. Phys., 36(4), 979-995.
  8. [8]  Giachetta, G. (1992), Jet methods in nonholonomic mechanics, J. Math. Phys., 33, 1652-1655.
  9. [9]  Janová, J. and Musilová, J. (2009), Non-holonomic mechanics mechanics: A geometrical treatment of general coupled rolling motion, Int. J. Non-Linear Mechanics, 44, 98-105.
  10. [10]  Marsden, J.E. and Ratiu, T.S. (1999), Introduction to Mechanics and Symmetry. Texts in Applied Mathematics 17, Springer Verlag, New York 2nd ed.
  11. [11]  Massa, E. and Pagani, E. (1997), A new look at classical mechanics of constrained systems. Ann. Inst. Henri Poincaré, 66, 1-36.
  12. [12]  Lepadatu, D., Judele, L., Sanduleche, G., Rosu, A.R., and Diac, M. (2014). The evolution of optical and optoelectronic distance measurement techniques in applied topography, Lucrǎri Științifice, 107.
  13. [13]  Canton, P. (1997), Vidéo et sciences physiques, Le Bup Physique Chimie, 91, n° 796, 1399-1424, juillet-Aout- Septembre.
  14. [14]  Grosse, A. and Lecarpentier, P. (1993), Mesures informatiques sur des images vidéo, Le Bup Physique Chimie, 87, n° 758, 1367-1380, Novembre.
  15. [15]  Bryan, J. (2012), Physics instruction using video analysis technology.
  16. [16]  Bryan, J. (2004), Video analysis software and the investigation of the conservation of mechanical energy, Contemporary Issues in Technology and Teacher Education, 4(3), 284-298.
  17. [17]  Haddout, S. and Rhazi, M. (2015), Levenberg-Marquardt’s and Gauss-Newton algorithms for parameter optimisation of the motion of a point mass rolling on a turntable, European Journal of Computational Mechanics, 24(6), 302-318.
  18. [18]  Transtrum, M.K. and Sethna, J.P. (2012), Improvements to the Levenberg-Marquardt algorithm for nonlinear least-squares minimization, arXiv preprint arXiv:1201.5885. Cornell University, USA
  19. [19]  Wang, S., Cai, G., Zhu, Z., Huang, W., and Zhang, X. (2015), Transient signal analysis based on Levenberg- Marquardt method for fault feature extraction of rotating machines, Mechanical Systems and Signal Processing, 54, 16-40.
  20. [20]  Björck, A. (1996), Numerical methods for least squares problems. Philadelphia, PA: SIAM.
  21. [21]  Gratton, S., Lawless, A.S., and Nichols, N.K. (2007), Approximate Gauss-Newton methods for nonlinear least squares problems, SIAM Journal on Optimization, 18, 106-132.
  22. [22]  Gavin, H. (2011), The Levenberg-Marquardt method for non-linear least squares curve-fitting problems (1- 15), Department of Civil and Environmental Engineering, Duke University, Durham, NC, USA.
  23. [23]  Marquardt, D.W. (1963), An algorithm for least-squares estimation of nonlinear parameters, Journal of the Society for Industrial & Applied Mathematics, 11, 431-441.
  24. [24]  Ranganathan, A. (2004), The Levenberg-Marquardt algorithm, Tutoral on LM Algorithm, 1-5.
  25. [25]  Lourakis, M.I. (2005), A brief description of the Levenberg-Marquardt algorithm implemented by levmar, Heraklion, Crete, Greece: Foundation of Research and Technology.
  26. [26]  Madsen, K., Nielsen, N.B., and Tingleff, O. (2004), Methods for non-linear least squares problems (Technical Report). Lyngby: Informatics and Mathematical Modeling, Technical University of Denmark.
  27. [27]  Schwartz, R. (2008), Biological modeling and simulation: A survey of practical models, algorithms, and numerical methods, Cambridge, MA and London, England: MIT Press.
  28. [28]  Häußler, W.M. (1983), A local convergence analysis for the Gauss-Newton and Levenberg- Morrison- Marquardt Algorithms, Computing, 31, 231-244.
  29. [29]  Saltelli, A., Tarantola, S., and Campolongo, F. (2000), Sensitivity analysis as an ingredient of modeling, Statistical Science, 377-395.
  30. [30]  Nearing, M.A., Deer-Ascough, L., and Laflen, J.M. (1990), Sensitivity analysis of the WEPP hillslope profile erosion model, Trans. ASAE, 33(3), 839-849.
  31. [31]  Jolicoeur, B. (2002), Screening designs sensitivity of a nitrate leaching model (ANIMO) using a one-at-a-time method, USA: State University of New York at Binghampton.
  32. [32]  Mouida, A. and Alaa, N. (2011), Sensitivity Analysis of TSEB Model, International Journal of Computer Science.
  33. [33]  Haddout, S. (2016), Motion of a Point Mass in a Rotating Disc: A Quantitative Analysis of the Coriolis and Centrifugal Force, Journal of Theoretical and Applied Mechanics, 46(2), 83.