Skip Navigation Links
Journal of Environmental Accounting and Management
António Mendes Lopes (editor), Jiazhong Zhang(editor)
António Mendes Lopes (editor)

University of Porto, Portugal


Jiazhong Zhang (editor)

School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi Province 710049, China

Fax: +86 29 82668723 Email:

Linking Water Footprint with the Sustainable Development Goals: a Step-by-Step Method Description and Case Study

Journal of Environmental Accounting and Management 11(3) (2023) 341--352 | DOI:10.5890/JEAM.2023.09.007

Larissa Raquel Matias Menussi$^{1}$, Thamiris Linhares Marques$^{1}$, Gabriela Giusti$^{1}$, Daiane Vit\'{o}ria da Silva$^1$, Maria Cl\'{e}a Brito de Figueir\^{e}do$^{2}$, Diogo A. Lopes Silva$^{1}$

$^{1}$ Research Group on Sustainability Engineering, Production Engineering Department of Sorocaba, Center for Science &

o Carlos, UFSCar, Sorocaba, SP, Brazil

$^{2}$ Biomass Technology Laboratory, Embrapa Agroind'{u}stria Tropical, Rua Dra. Sara Mesquita, no 2.270, Bairro Planalto

do Pici, CEP 60511-110, Fortaleza, CE, Brazil

Download Full Text PDF



This paper calculated the water footprint (WF) of chilled chicken meat processing under alternative scenarios, including the contribution analysis to the Sustainable Development Goals (SDG). Volumetric WF was calculated according to the WF Network approach. The contribution of the system to the SDGs was analyzed using a qualitative screening approach. The results showed a WF of 136.1 liters for processing 1 kg of chilled chicken meat, with 0.7 liters from blue water and 135.4 liters from grey water. The wastewater treatment processes accounted for 99.5\% of the total WF. According to scenarios analysis, to reduce the total WF of chilled chicken, it is necessary to invest in wastewater treatment technologies. The SDG analysis revealed potential positive contributions of the system to SDGs 2, 3, 6, 12, and 14 if the improvement scenarios are put in practice. The WF-SDG analysis was beneficial to evaluate the role of chicken meat processing in the search for SDGs, and to evaluate how the improvement opportunities can influence the system's relationship to the SDG. The methodology for connecting the SDGs to environmental metrics can be replicated for any type organizations, enabling the integration of the SDGs in production chains. Connecting environmental metrics to the SDGs can indicate directions for production systems seeking sustainability improvements. Thus, it becomes beneficial for society's search for 17 SDGs. There are few studies concerning WF and the SDGs, especially regarding industrialized products. Thus, this paper can contribute to this gap.


  1. [1]  Alexandratos, S.D., Barak, N., Bauer, D., Davidson, F.T., Gibney, B.R., Hubbard, S.S., Taft, H.L., and Westerhof, P. (2019), Sustaining water resources: Environmental and economic impact, ACS Sustainable Chemistry $\&$ Engineering, 7(3), 2879-2888.
  2. [2]  Ag\^{e}ncia Nacional das {A}guas (ANA). Relat{o}rio Conjuntura dos Recursos H{i}dricos no Brasil [Internet]. Relat{o}rio Conjuntura dos Recursos H{i}dricos no Brasil. 2017 [cited 2021 Apr 21]. p. 1. Available from:
  3. [3]  Ibidhi, R., Hoekstra, A.Y., Gerbens-Leenes, P.W., and Chouchane, H. (2017), Water, land and carbon footprints of sheep and chicken meat produced in Tunisia under different farming systems, Ecological Indicators, 77, 304-313.
  4. [4]  United Nations. World Population Prospects: The 2017 Revision, Key Findings and Advance Tables [Internet]. 2017th ed. United Nations, editor. World Population Prospects. New York: United Nation; 2017. 53 p. Available from:\_KeyFindings.pdf.
  5. [5]  FAO. (2019), FAOSTAT [Internet]. FAOSTAT. p. 1. Available from:\#data/QC.
  6. [6]  ABPA A brasileira de proteina animal. Estatistica do setor [Internet]. Estatistica do setor. 2020 [cited 2021 May 27]. p. 1. Available from:
  7. [7]  ANA AN das {A}, Usos da {A}gua. (2020), In: ANA, editor. Conjuntura dos Recursos H{i}dricos do Brasil. 2020th ed. Brasilia; 29--50.
  8. [8]  Hoekstra, A.Y. and Hung, P.Q. (2002), Virtual water trade. Delft. Available from: https://www.waterfootprint. org/media/downloads/Report11.pdf.
  9. [9]  Chapagain, A.K. and Tickner, D. (2012), Water footprint: help or hindrance?, Water Alternatives, 5(3), 563.
  10. [10]  Hoekstra, A.Y., Chapagain, A.K., Aldaya, M.M., and Mekonnen, M.M. (2011), Manual de avaliação da pegada hídrica: estabelecendo o padrão global, São Paulo: Instituto de Conservação Ambiental.
  11. [11]  Ibidhi, R. and Salem, H.B.(2020), Water footprint of livestock products and production systems: A review, Animal Production Science, 60(11), 1369-1380.
  12. [12]  Rodrigues Junior, U.J. and Dziedzic, M. (2021), The water footprint of beef cattle in the amazon region, Brazil. Ciência Rural, 51.
  13. [13]  Ran, Y., Lannerstad, M., Herrero, M., Van Middelaar, C.E., and De Boer, I.J. (2016), Assessing water resource use in livestock production: A review of methods, Livestock Science, 187, 68-79.
  14. [14]  Ngxumeshe, A.M., Ratsaka, M., Mtileni, B., and Nephawe, K. (2020), Sustainable application of livestock water footprints in different beef production systems of South Africa, Sustain, 12(23), 1–13.
  15. [15]  Schneider, V.E. and Carra, S.H.Z. (2016), Pegada hídrica dos suínos abatidos na região do Corede Serra, RS, Brasil, Revista Ambiente $\&$ Água, 11, 211-224.
  16. [16]  Palhares, J.C.P. (2018), Pegada h{i}drica na produ\c{c}\~{a}o de carne e leite bovino no Brasil. In: Macedo J{u}nior G de L, Silva SP, editors. IV Simp{O}Sio Brasileiro De Produ\c{C}\~{A}O De Ruminantes No Cerrado. Uberl\^{a}ndia; 37--54.
  17. [17]  Santos, J.F.S. and Naval, L.P. (2020), Spatial and temporal dynamics of water footprint for soybean production in areas of recent agricultural expansion of the Brazilian savannah (Cerrado), Journal of Cleaner Production, 251, 119482.
  18. [18]  Palhares, J.C.P., Morelli, M., and Novelli, T.I. (2021), Water footprint of a tropical beef cattle production system: The impact of individual-animal and feed management, Advances in Water Resources, 149, p.103853.
  19. [19]  Carrascal-Arbaiza, E. and Baldeón-Quispe, W. (2018), Huella hídrica del pollo de engorde beneficiado en la costa de Lima-Perú, Producción+ Limpia, 13(1), 106-111.
  20. [20]  Berger, M., Campos, J., Carolli, M., Dantas, I., Forin, S., Kosatica, E., Kramer, A., Mikosch, N., Nouri, H., Schlattmann, A., and Schmidt, F. (2021), Advancing the water footprint into an instrument to support achieving the SDGs–recommendations from the ``Water as a Global Resources'' research initiative (GRoW), Water Resources Management, 35, 1291-1298.
  21. [21]  Welle. (2020), The water footprint of companies: local measures in global supply chains.
  22. [22]  Weidema, B., Goedkoop, M., Meijer, E. and Harmens, R. (2020), LCA-based assessment of the Sustainable Development Goals.
  23. [23]  Brazil. (2005), Resolu\c{c}\~{a}o No 357. Brasil: CONAMA; 58-63.
  24. [24]  Palhares, J.C.P. (2014), Pegada h{i}drica de su{i}nos e o impacto de estrat{e}gias nutricionais, Revista Brasileira de Engenharia Agrícola e Ambiental, 18(5), 533-538.
  25. [25]  Brazil. (2016), Qualidade da {A}gua [Internet]. Relat{o}rio Consolidado da Qualidade da {A}gua. Available from:{a}gua.html.
  26. [26]  CETESB. (2021), Am\^{o}nia - mortandade de peixes [Internet]. mortandade de peixes. [cited 2021 May 27]. 1. Available from:
  27. [27]  De Nardi, I.R., Del Nery, V., Amorim, A.K.B., Dos Santos, N.G., and Chimenes, F. (2011), Performances of SBR, chemical–DAF and UV disinfection for poultry slaughterhouse wastewater reclamation, Desalination, 269(1-3), 184-189.
  28. [28]  Schatzmann, H.C. (2009), Tratamento avan\c{c}ado de efluentes de frigor{i}fico de aves o re{u}so da {a}gua, Universidade Federal de Santa Catarina.
  29. [29]  United Nations. (2019), Agenda 2030 [Internet]. Transforming our world: the 2030 Agenda for Sustainable Development. Available from:
  30. [30]  Wulf, C., Werker, J., Zapp, P., Schreiber, A., Schlör, H., and Kuckshinrichs, W. (2018), Sustainable development goals as a guideline for indicator selection in life cycle sustainability assessment, Procedia Cirp, 69, pp.59-65.
  31. [31]  Mekonnen, M.M. and Hoekstra, A.Y. (2012), A global assessment of the water footprint of farm animal products, Ecosystems, 15, 401-415.