Skip Navigation Links
Journal of Environmental Accounting and Management
Dmitry Kovalevsky (editor), Jiazhong Zhang(editor)
Dmitry Kovalevsky (editor)

Climate Service Center Germany (GERICS), Helmholtz-Zentrum Hereon, Fischertwiete 1, 20095 Hamburg, Germany

Fax: +49 (0) 40 226338163 Email:

Jiazhong Zhang (editor)

School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi Province 710049, China

Fax: +86 29 82668723 Email:

Integrated Emergy and Economic Performance Assessments of Maize Production in Semiarid Tropics: Comparing Tillage Systems

Journal of Environmental Accounting and Management 5(3) (2017) 211--232 | DOI:10.5890/JEAM.2017.09.004

Inacio De Barros; Edson Patto Pacheco; Hélio Wilson Lemos De Carvalho

Embrapa Coastal Tablelands, Brazilian Agricultural Research Corporation (Embrapa), Aracaju (SE) – Brazil

Download Full Text PDF



Owing to a combination of factors like improved genotypes, closeness to consuming markets, good infrastructure to production outlets and a rainy period that occurs during the off-season, maize production in the Eastern part of the semiarid tropics (SAT) in Brazil is undergoing a shift towards a farming systems with intensive use of chemical inputs, tillage and high yielding genetically-modified (GMO) hybrids. However, the region is highly prone to desertification, and the intensive tillage accelerates the soil degradation process. Although conservation tillage has been reported to improve soil protection and quality and, consequently, sustainability of cereal production in many environments, farmers are still reluctant to adopt it, fearing yield declines as documented in early studies in SAT. Recent findings however, have shown that no-till can be instrumental for improving soil fertility and crop yields also in semiarid environments. The goals of this study are to assess the environmental and economic performances of conservation tillage in SAT and to compare the environmental performance of maize production in SAT and in more favorable environments for agricultural production in South America. Emergy accounting was used for assessing the environmental performance, and classical economic indicators for assessing the economic performances. Indicators for both environmental and economic aspects showed that no-till improves environmental performance, while it reduces costs and increases profits when compared to reduced and conventional tillage systems for maize production in SAT. Although some emergy indicators are slightly poorer in SAT than in the Atlantic Rainforest, the transformity of maize grains allow us to infer that maize production in SAT makes use of environmental resources more efficiently than in the South of Brazil or in the Argentinean Pampas. Further analysis shows that the higher prices obtained for maize grains in the region seem to pay off for the higher climate risks of Brazilian SAT.


We gratefully acknowledge two anonymous external reviewers for their many helpful suggestions offered on an earlier version of this article. Funding: this work was supported by the National Council for Scientific and Technological Development (CNPq) and State Funding Agency of Sergipe (FAPITEC-SE – Process #019.203.01227/2011-0).


  1. [1]  Agostinho, F., Diniz, G., Siche, R. and Ortega, E. (2008), The use of emergy assessment and the Geographical Information System in the diagnosis of small family farms in Brasil, Ecological Modelling 210, 37-57
  2. [2]  AGROLINK (2016), Milho. Accessed on 03/11/2016
  3. [3]  Baker, C.J., Saxton, K.E. and Ritchie, W.R. (2002), No-Tillage Seeding: Science and Practice. 2nd ed. Oxford, UK: CAB International
  4. [4]  Bargigli, S. and Ulgiati, S. (2003), Emergy and life-cycle assessment of steel production. In: Brown MT, Odum HT, Tilley D, Ulgiati S (Eds.) Proceedings of the Second Biennial Emergy Conference. Center for Environmental Policy, University of Florida, Gainsville, FL, USA. p.141-156
  5. [5]  Barros, I., Blazy, J.M., Rodrigues, G.S., Tournebize, R. and Cinna, J.P. (2009), Emergy evaluation and economic performance of banana cropping systems in Guadeloupe (French West Indies), Agriculture, Ecosystems & Environment 129, 437-449
  6. [6]  Barros, I., Pacheco, E.P., Carvalho, H.W.L., Cintra, F.L.D., Silva, J.M.L., Dantas, E.N. and Soares, T.F.S.N. (2015a), Desempenho da cultura do milho em diferentes sistemas de manejo do solo nas condições do agreste sergipano, Boletim de Pesquisa e Desenvolvimento 89, ISSN 1678-1961, Embrapa CPATC
  7. [7]  Barros, I., Pacheco, E.P., Carvalho, H.W.L., Cintra, F.L.D., Silva, J.M.L., Dantas, E.N. and Soares, T.F.S.N. (2015b), Perdas de solo e água em sistemas de cultivo de milho no agreste sergipano, Boletim de Pesquisa e Desenvolvimento 90, ISSN 1678-1961, Embrapa CPATC
  8. [8]  Bastianoni, S., Marchettini, N., Panzieri, M. and Tiezzi, E. (2001), Sustainability assessment of a farm in the Chianti area (Italy), Journal of Cleaner Production 9, 365-373
  9. [9]  BCB- Banco Central do Brasil (2016), Histórico de metas para a inflação no Brasil. Available at: last retrieved on 13/07/2015
  10. [10]  Bessam, F. and Mrabet, R. (2003), Long-term Changes in Particulate Organic Matter Under No-Tillage Systems in a Semi-Arid Soil of Morocco. In Proc. 16th ISTRO Conf. Brisbane, Australia. p. 144-149
  11. [11]  Bot, A. and Benites, J. (2005), Creating drought-resistant soil. In The Importance of Soil Organic Matter: Key to Drought-Resistant Soil and Sustained Food Production. FAO soils bulletin 80, FAO - Land and Plant Nutrition Management Service. Rome. p. 35- 40
  12. [12]  Brandt-Williams, S.L. (2002), Handbook of Emergy Evaluation: A Compendium of Data for Emergy Computation Issued In a Series of Folios. Folio #4. Emergy of Florida Agriculture. Center for Environmental Policy. University of Florida, Gainesville, Florida, USA
  13. [13]  Brown, M.T. and Bardi, E. (2001), Handbook of Emergy Evaluation: Folio #3—Emergy of Ecosystems. Center for Environmental Policy, University of Florida, Gainesville, FL, USA Brown, M.T., Protano, G. and Ulgiati, S. (2011), Assessing geobiosphere work of generating global reserves of coal, crude oil, and natural gas, Ecological Modelling 222, 879-887
  14. [14]  Brown, M.T., Raugei, M. and Ulgiati, S. (2012), On boundaries and "investments" in Emergy Synthesis and LCA: A case study on thermal vs. photovoltaic electricity, Ecological Indicators 15, 227-235
  15. [15]  Brown, M.T. and Ulgiati, S. (2004), Energy quality, emergy, and transformity: H.T. Odum’s contributions to quantifying and understanding systems, Ecological Modelling 178, 201-213
  16. [16]  Bruns, H.A. and Ebelhar, M.W. (2006), Nutrient Uptake of Maize Affected by Nitrogen and Potassium Fertility in a Humid Subtropical Environment, Communications in Soil Science and Plant Analysis 37, 275-293
  17. [17]  Buanec, B. (1972), Dix ans de culture motorisée sur um basin versant de Centre Côte d’Ivoire, Agricultura Tropica 27, 1191-1211
  18. [18]  Buanec, B. (1974), Observations on soil profile loosening in ferrallitic soils: Effects on soil characteristics and growth of annual crops Agricultura Tropica 29, 1079-1099
  19. [19]  Cassman, K.G., Dobermann, A. and Walters, D.T. (2002), Agroecosystems, Nitrogen-use Efficiency, and Nitrogen Management, Ambio 31, 132-140
  20. [20]  Charreau, C. and Nicou, R. (1971), L’amélioration du profil culturel dans les sol sableux et sablo-argileux de la zone tropicale séche ouest-africaine et ses incidances agronomiques (après les traveaux des recherches de l’IRAT em Afrique de l’Ouest). Bulletin Agronomique N°23. IRAT. Available at: Last retrieved on 05/07/2015
  21. [21]  Cohen, M.J., Brown, M.T. and Shepherd, K.D. (2006), Estimating the environmental costs of soil erosion at multiple scales in Kenya using emergy synthesis, Agriculture, Ecosystems & Environment 114, 249-269
  22. [22]  CONAB - COMPANHIA NACIONAL DE ABASTECIMENTO (2013), Acompanhamento da safra brasileira de grãos, v. 1 - Safra 2013/14, n. 3 – 3rd Survey, Dec. 2013. Available at: Last retrieved on 28/04/2017.
  23. [23]  Costa, T.C.C., Oliveira, M.A.J., Accioly, L.J.O. and Silva, F.H.B.B. (2009), Analysis of degradation of "Caatinga" in the desertification nucleus of Seridó – Brazil. Revista Brasileira de Engenharia Agrícola e Ambiental 13, 961-974
  24. [24]  Demetrio, F.J.C. (2011), Avaliação de sustentabilidade ambiental do Brasil com a contabilidade em emergia. Doctoral Thesis. Uni versidade Paulista (UNIP). São Paulo. 170 pp
  25. [25]  EMDAGRO - Empresa de Desenvolvimento Agropecuário de Sergipe (2008), Informações básicas municipais – Município de Frei Paulo. EMDAGRO. 25 pp. Available at: Accessed on 25/06/2015
  26. [26]  FED - Federal Reserve USA (2016), Foreign Exchange Rates - H.10. Available at: Accessed on 03/11/2016
  27. [27]  Ferraro, D.O. and Benzi, P. (2015), A long-term sustainability assessment of an Argentinian agricultural system based on emergy synthesis, Ecological Modelling 306, 121-129
  28. [28]  Foley, J.A., Ramankutty, N., Brauman, K.A., Cassidy, E.S., Gerber, J.S., Johnston, M., Mueller, N.D., O’Connell, C., Ray, D.K., West, P.C., Balzer, C., Bennett, E.M., Carpenter, S.R., Hill, J., Monfreda, C., Polasky, S., Rockström, J., Sheehan, J., Siebert, S., Tilman, D. and Zaks, D.P.M. (2011), Solutions for a cultivated planet, Nature 478, 337-342
  29. [29]  Fowler, R. and Rockström, J. (2001), Conservation tillage for sustainable agriculture: An Agrarian revolution gathers momentum in Africa, Soil & Tillage Research 61, 93-107
  30. [30]  Franzese, P.P., Cavalett, O., Häyhä, T. and D’Angelo, S. (2013), Integrated Environmental Assessment of Agricultural and Farming Production Systems in the Toledo River Basin (Brazil), ISBN 978-92-3-001138-3 United Nations Educational, Scientific and Cultural Organization (UNESCO). 71 pp
  31. [31]  Friedrich, T., Derpsch, R. and Kassam, A. (2012), Overview of the global spread of conservation agriculture. Field Actions Research Reports, Special Issue (6) on Reconciling Poverty Eradication and Protection of the Environment. Available at: accessed on 08/06/2015
  32. [32]  Giller, K.E., Witter, E., Corbeels, M. and Tittonell, P. (2009), Conservation agriculture and smallholder farming in Africa: The heretics' view, Soil & Tillage Research 114, 23-34
  33. [33]  Guto, S.N., Pypers, P., Vanlauwe, B., Ridder, N. and Giller, K.E. (2011), Socioecological niches for minimum tillage and cropresidue retention in continuous maize cropping systems in smallholder farms of central Kenya, Agronomy Journal 10, 1-11
  34. [34]  Hebblethwaite, J., Soza, R., Faye, A. and Hutchinson, N. (1996), No-till and reduced tillage for improved crop production in sub- Saharan Africa. Achieving greater impact from research investments in Africa. In Proc. workshop “Developing African Agriculture: Achieving Greater Impact from Research Investments”. Addis Ababa. p. 195-199
  35. [35]  Helsel, Z.R. (1992), Energy and alternatives for fertilizer and pesticide use. In: Stout BA, Fluck RC (Eds.) Energy in World Agriculture, vol. 6. Energy in farm production. Elsevier Science Publisher. New York p. 177-201
  36. [36]  Hobbs, P.R. (2007), Conservation agriculture: What is it and why is it important for future sustainable food production? Journal of Agricultural Science 145, 127-137
  37. [37]  Hobbs, P.R., Sayre, K. and Gupta, R. (2008), The role of conservation agriculture in sustainable agriculture, Philosophical Transactions of the Royal Society B 363, 543-555
  38. [38]  Hoogmoed, W.B. (1999), Tillage for soil and water conservation in the semi-arid tropics. Doctoral Thesis. Wageningen Uinversity, the Netherlands. 184 pp
  39. [39]  Köppen, W. (1936), Das geographisca System der Klimate, in: Handbuch der Klimatologie. In: Köppen W, Geiger G. Chapter 1. Gebr, Borntraeger, 1-44
  40. [40]  Lal, R. (1995), Technological options for sustainable management of Alfisols and Ultisols in Nigeria. In: Lal R, Stewart BA (Eds) Soil Management. Experimental basis for sustainability and environmental quality. Advances in Soil Sciences – Series. CRC Press Boca Raton. pp. 123-140
  41. [41]  Lefroy, E. and Rydberg, T. (2003), Emergy evaluation of three cropping systems in southwestern Australia, Ecological Modelling 161, 195-211
  42. [42]  Lu, H.F., Lan, S.F., Li, L. and Peng, S.L. (2003), New emergy indices for sustainable development, Journal of Environmental Sciences (China) 15, 562-569
  43. [43]  Maia, S.M.F., Xavier, F.A.Z., Oliveira, T.S., Mendonça, E.S. and Araujo Filho, J.Á. (2008), Nitrogen fractions in a Luvisol under agroforestry and conventional systems in the semi-arid zone of Ceará, Brazil, Revista Brasileira de Ciência do Solo 32, 381-392
  44. [44]  Martin, J.F., Diemont, S.A.W., Powell, E., Stanton, M. and Levy-Tacher, S. (2006), Emergy evaluation of the performance and sustainability of three agricultural systems with different scales and management, Agriculture, Ecosystems & Environment 115, 128- 140
  45. [45]  Mattoso, M.J., Melo Filho, G.A. (2009), Coeficientes técnicos. In Cruz J.C. (ed). Cultivo do milho. Sistemas de Produ??o, 2. ISSN 1679-012X Electronic version - 5th edition. Embrapa Milho e Sorgo. Available at: accessed on 27/05/2015
  46. [46]  Mrabet, R. (2000), Differential response of wheat to tillage management systems under continuous cropping in a semiarid area of Morocco, Field Crops Research 66,165-174
  47. [47]  Nicou, R. (1974), Contribution on the study and improvement of the porosity of sand and sandy-clay soil in the dry tropical zone, Agricultura Tropica 29, 110-127
  48. [48]  Norwood, C.A. (1999), Water use and yield of dryland row crops as affected by tillage, Agronomy Journal 91, 108-115
  49. [49]  Nunes, H.V. (2006), Plantio direto e decomposição de restos culturais em diferentes sistemas de cultivos. Doctoral Thesis. Universidade Federal da Paraíba, Areia, 86 pp
  50. [50]  Nye, P.H. and Greenland, D.J. (1964), Changes in the soil after clearing tropical forest, Plant Soil 21, 101-112
  51. [51]  Odum, H.T. (1996), Environmental Accounting: Emergy and Environmental Decision Making. John Wiley and Sons Inc., New York, USA. 384 pp
  52. [52]  Odum, H.T., Brown, M.T. and Brand-Williams, S.L. (2000), Handbook of Emergy Evaluation. Folio #1: Introduction and Global Budget. Center for Environmental Policy, University of Florida, Gainesville, FL, USA
  53. [53]  Odum, H.T. (2000), Emergy of Global Processes. Folio #2: Handbook of Emergy Evaluation: A Compendium of Data for Emergy Computation Issued in a Series of Folios. Center for Environmental Policy, University of Florida. Gainesville, FL, USA
  54. [54]  Odum, H.T. (2007), Environment, Power and Society For the Twenty-first Century. The Hierarchy of Energy. Columbia University Press, New York, USA. 418 p
  55. [55]  Pacheco, E.P., Martins, C.R. and Barros, I. (2013), Viabilidade econômica do sistema plantio direto de milho consorciado com forrageiras, no Estado de Sergipe. Comunicado Técnico 132. ISSN 1677-5635. Embrapa Tabuleiros Costeiros
  56. [56]  Peel, M.C., Finlayson, B.L. and McMahon, T.A. (2007), Updated world map of the K?ppen-Geiger climate classification, Hydrology and Earth System Sciences 11, 1633-1644
  57. [57]  Rodrigues, G.S., Brown, M.T. and Odum, H.T. (2002a), SAMeFrame – Sustainability Assessment Methodology Framework. In: 3rd Biennial International Workshop Advances in Energy Studies, 2002, Porto Venere, Italy: SG Editoriali, Padova, v.3, p.605-612
  58. [58]  Rodrigues, G.S., Kitamura, P.C., Sá, T.O.D.A. and Vielhauer, K. (2002b), Sustainability assessment of slash-and-burn and fire-free agriculture in Northeastern Pará , Brazil. In: Brown MT, Odum HT, Tilley D, Ulgiati S (Eds.) Second Biennial Emergy Conference: Theory and Practice of the Emergy Methodology. Center for Environmental Policy, University of Florida, Gainesville, FL, USA
  59. [59]  Rotolo, G., Francis, C., Craviotto, R., Viglia, S., Pereyra, A. and Ulgiati, S. (2015a), Time to re-think the GMO revolution in agriculture, Ecological Informatics 26, 35-49
  60. [60]  Rotolo, G.C., Francis, C., Craviotto, R.M. and Ulgiati, S. (2015b), Environmental assessment of maize production alternatives: Traditional, intensive and GMO-based cropping patterns, Ecological Indicators 57, 48-60
  61. [61]  Rydberg, T. and Jansen, J. (2002), Comparison of horse and tractor traction using emergy analysis, Ecological Engineering 19, 13-28
  62. [62]  Sadras, V.O., Grassini, P. and Steduto, P. (2011), Status of water use efficiency of main crops. SOLAW Background Thematic Report - TR07. FAO, Rome, 41pp
  63. [63]  Serraj, R. and Siddique, K. (2012), Conservation agriculture in dry areas, Field Crops Research 132, 1-6
  64. [64]  Sharma, K.L., Mandal, U.K., Srinivas, K., Vittal, K.P.R., Madal, B., Grace, J.K. and Ramesh, V. (2005), Long-term soil management effects on crop yields and soil quality in a dryland Alfisol, Soil & Tillage Research 83, 246-259
  65. [65]  Silva Neto, L.F. (2003), Influência do plantio direto e da cobertura vegetal sobre os atributos físicos e matéria organica do solo e produtividade do milho. Monography. Universidade Federal da Paraíba, Areia, 41 pp
  66. [66]  Silva, A.S. (2002), Propriedades físicas e químicas do solo, sistema radicular e produtividade do milho sob diferentes sistemas de manejo na microrregião de Guarabira-PB. MSc Dissertation. Universidade Federal da Paraíba, Areia, 80 pp
  67. [67]  Silva, A.S., Silva, I.F., Silva Neto, L.F. and Souza, C. (2011), Semeadura direta na produção de milho em agricultura de sequeiro na região nordeste do Brasil, Ciência Rural 41, 1556-1562
  68. [68]  Sousa, F.P., Ferreira, T.O., Mendonca, E.S., Romero, R.E. and Oliveira, J.G.B. (2012), Carbon and nitrogen in degraded Brazilian semi-arid soils undergoing desertification, Agriculture, Ecosystems & Environment 148, 11-21
  69. [69]  Stark, C.H. and Richards, K.G. (2008), The Continuing Challenge of Agricultural Nitrogen Loss to the Environment in the Context of Global Change and Advancing Research, Dynamic Soil, Dynamic Plant 2, 1-12
  70. [70]  Steiner, K., Derpsch, R. and Koller, K. (1998), Sustainable management of soil resources through zero tillage, Agriculture and Rural Development 5, 64-66
  71. [71]  Tan, K.H. (2009), Environmental Soil Science. 3rd ed. CRC Press. Boca Raton, 600 p
  72. [72]  Tijani, F.O., Oyedele, D.J. and Aina, P.O. (2008), Soil moisture storage and water-use efficiency of maize planted in succession to different fallow treatments, International Agrophysics 22, 81-87
  73. [73]  Ulgiati, S. and Brown, M.T. (1998), Monitoring patterns of sustainability in natural and man-made ecosystems, Ecological Modelling 108, 23-36
  74. [74]  Ulgiati, S., Odum, H.T. and Bastianoni, S. (1994), Emergy use, environmental loading and sustainability. An emergy analysis of Italy, Ecological Modelling 73, 215-268
  75. [75]  Van Raij, B., Quaggio, J.á., Cantarella, H. and Abreu, C.A. (1997), Interpretação de resultados de análise de solo. In: van Raij B, Cantarella H, Quaggio JA, Furlani AMC (Eds). Recomendações de adubação e calagem para o Estado de São Paulo, 2.ed. Ver Atual. Campinas, Instituto Agronômico/Fundação IAC. p. 8-13. (Technical Bulletin, 100)
  76. [76]  Wischmeier, W.H. and Smith, D.D. (1978), Predicting rainfall erosion losses: a guide to conservation planning. USDA, Washington, DC. 58 pp. (Agricultural Handbook, 537)
  77. [77]  Zhang, L.X., Song, B. and Chen, B. (2012), Emergy-based analysis of four farming systems: Insight into agricultural diversification in rural China, Journal of Cleaner Production 28, 33-44
  78. [78]  Zhang, X., Shen, J., Wang, Y., Qi, Y., Liao, W., Shui, W., Li, L., Qi, H. and Yu, X. (2017), An environmental sustainability assessment of China’s cement industry based on emergy, Ecological Indicators 72, 452-458.