Skip Navigation Links
Journal of Environmental Accounting and Management
Dmitry Kovalevsky (editor), Jiazhong Zhang(editor)
Dmitry Kovalevsky (editor)

Climate Service Center Germany (GERICS), Helmholtz-Zentrum Hereon, Fischertwiete 1, 20095 Hamburg, Germany

Fax: +49 (0) 40 226338163 Email: dmitry.v.kovalevsky@gmail.com

Jiazhong Zhang (editor)

School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi Province 710049, China

Fax: +86 29 82668723 Email: jzzhang@mail.xjtu.edu.cn


The Tenth Planetary Boundary To What Extent Energy Constraints Matter

Journal of Environmental Accounting and Management 4(4) (2016) 399--411 | DOI:10.5890/JEAM.2016.12.004

Marco Casazza$^{1}$, Gengyuan Liu$^{2}$,$^{3}$, Sergio Ulgiati$^{1}$,$^{2}$,$^{3}$

$^{1}$ University of Naples “Parthenope”, Department of Science and Technology, Centro Direzionale, Isola C4, 80143, Naples, Italy

$^{2}$ State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China

$^{3}$ Beijing Engineering Research Center for Watershed Environmental Restoration & Integrated Ecological Regulation, Beijing 100875, China

Download Full Text PDF

 

Abstract

This paper introduces the energy constraints as the tenth existing Planetary Boundary (PB hereafter) for defining a safe operating space for humanity on Earth. Energy limitations, in fact, follow all the technical requirements, that are applied to all the existing PBs. After discussing about the specific power both of some planetary components and of some elements of the biosphere, the evolution of human civilization is discussed, considering its additive specific power. This is done in order to show the existing power shift originated by the industrialization and, subsequently, within the Anthropocene. The historical trend of Total Primary Energy Supply (TPES) for human civilization, expressed in terms of power and measured in units of [W], follow within the discussion. Consequently, both a lower preliminary limit (identified with the preindustrial TPES, according to the PB framework), and an upper threshold are identified. The latter is related to the total appropriation of the Net Primary Production (NPP). Finally, the foreseen TPES for the year 2050 is discussed under three different scenarios. Different “quality” goals are defined, according to different existing low-carbon scenarios, which are related to a sufficiency perspective for humanity. Such a transition is of paramount importance since it will enable humanity to remain into a safe operating space within the biosphere. While the paths to reach such an objective go beyond the scope of this paper, it is anyway remarked that both a socio-economic transition and policy efforts are necessary in order to involve the population by means of well-planned bottom-up actions.

Acknowledgments

The authors are greatly indebted with prof. Luigi Sertorio (University of Torino, Italy) for the inspiring comments to the present manuscript and earlier conversations about planetary energetics. Sergio Ulgiati gratefully acknowledges the financial support received from the European Union Project EUFORIE - European Futures for Energy Efficiency, funded under H2020-EU.3.3.6. - Robust decision making and public engagement. Ulgiati also acknowledges the contract by the School of Environment, Beijing Normal University within the framework of the National Programme “One Thousand Foreign Experts Plan”. Gengyuan Liu is supported by the National Key Research and Development Program of China (No. 2016YFC0503005), the Fund for Innovative Research Group of the National Natural Science Foundation of China (Grant No. 51421065), the Projects of Sino-America International Cooperation and Exchanges of NSFC (No. 51661125010); Sergio Ulgiati, Marco Casazza and Gengyuan Liu are also supported by National Natural Science Foundation of China (Grant No. 41471466, 71673029).

References

  1. [1]  Bardi, U. (2011), The Limits to Growth Revisited, Springer-Verlag: New York.
  2. [2]  Brack, A., Horneck, G., Cockell, C.S., Bérces, A., Belisheva, N.K., Eiroa, C., Henning, T., Herbst, T., Kaltenegger, L., Léger, A., Liseau, R., Lammer, H., Selsis, F., Beichman, C., Danchi, W., Fridlund, M., Lunine, J., Paresce, F., Penny, A., Quirrenbach, A., Röttgering, H., Schneider, J., Stam, D., Tinetti, G. and White, G.J. (2010), Origin and Evolution of Life on Terrestrial Planets, Astrobiology 10(1), 69-76.
  3. [3]  Brown, J.H., Burnside, W.R., Davidson, A.D., DeLong, J.P., Dunn, W.C., Hamilton, M.J., Mercado-Silva, N., Nekola, J.C., Okie, J.G., Woodruff, W.H. and Zuo, W. (2011), Energetic Limits to Economic Growth, BioScience 61, 19-26.
  4. [4]  Brown, M.T. (2011), SolarShare: An Emergy Derived Index of Human Demand on Environment. In: Brown, M.T. (ed.). EMERGY SYNTHESIS 6: Theory and Applications of the Emergy Methodology. The Center for Environmental Policy, University of Florida: Gainesville, FL
  5. [5]  Brown, M.T., and Ulgiati, S. (2004), Emergy Analysis and Environmental Accounting. In: Cleveland, C. (ed.). Encyclopedia of Energy. Academic Press, Elsevier: Oxford (UK) pp. 329-354.
  6. [6]  Casazza, M. (2012), Energies to sell (In Italian: Energie da vendere), Cartman Edizioni: Torino.
  7. [7]  Casazza, M., Ferrari, C., Liu, G.Y. and Ulgiati, S. (2016), “Hope for a Celestial City - A Triptych”: A musical composition for sustainability and cleaner productions for the Jing-Jin-Ji region, China, Journal of Cleaner Production, Available online. DOI: 10.1016/j.jclepro.2016.09.087.
  8. [8]  Chaisson, E.J. (2014), The Natural Science Underlying Big History, The Scientific World Journal, Article ID 384912. DOI: 10.1155/2014/384912.
  9. [9]  Cherp, A. and Jewell, J. (2011), The three perspectives on energy security: intellectual history, disciplinary roots and the potential for integration, Current Opinion in Environmental Sustainability 3, 202-212.
  10. [10]  Cornell, S. (2012), On the System Properties of the Planetary Boundaries, Ecology and Society 17(1), r2. Available online. DOI: 10.5751/ES-04731-1701r02.
  11. [11]  Crutzen, P.J. and Stoermer, E.F. (2000), The Anthropocene, IGBP Global Change News 41, 17-18.
  12. [12]  de Groot, R.S., Wilson, M.A. and Boumans, R.M.J. (2002), A typology for the classification, description and valuation of ecosystem functions, goods and services, Ecological Economics 41, 393-408.
  13. [13]  Ehrlich, P. (1968), The Population Bomb, Ballantine Books: New York.
  14. [14]  European Commission (EC) (2011), Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions “Energy Roadmap 2050”, COM(2011) 885 final. Available online at: http://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:52011DC0885&from=EN.
  15. [15]  Fischer-Kowalski, M., Krausmann, F. and Pallua, I. (2014), A sociometabolic reading of the Anthropocene: Modes of subsistence, population size and human impact on Earth, The Anthropocene Review 1 (1), 8-33.
  16. [16]  Gerst, M.D., Raskin, P.D. and Rockström, J. (2014), Contours of a Resilient Global Future, Sustainability 6, 123-135.
  17. [17]  Gibbard, P.L. and Walker, M.J.C. (2014), The term “Anthropocene” in the context of formal geological classification, Geological Society, London, Special Publications 395, 29-37.
  18. [18]  Gorshkov, V.G. (1995), Physical and Biological Bases of Life Stability, Springer-Verlag: Berlin Heidelberg.
  19. [19]  Haberl, H., Erb, K.-H., Krausmann, F., Gaube, V., Bondeau, A., Plutzar, C., Gingrich, S., Lucht, W. and Fischer-Kowalski, M. (2007), Quantifying and mapping the human appropriation of net primary production in Earth’s terrestrial ecosystems, Proceedings of the National Academy of Sciences 104, 12942-12947.
  20. [20]  Hall, C.A.S., Powers, R. and Schoenberg, W. (2008), Peak Oil, EROI, Investments and the Economy in an Uncertain Future. In: David Pimentel, D. (ed.). Renewable Energy Systems: Environmental and Energetic Issues. Elsevier: London, pp. 113-136.
  21. [21]  Hall, C.A.S., Balogh, S. and Murphy, D.J.R. (2009), What is the minimum EROI that a sustainable society must have? Energies 2, 25- 47.
  22. [22]  Haub, C. (1995), How many people have ever lived on Earth? Population Today 23(2), 5-6.
  23. [23]  Hourcade, J.-C. and Crassous, R. (2008), Low-carbon societies: a challenging transition for an attractive future, Climate Policy 8(6), 607-612.
  24. [24]  Hughes, T.P., Carpenter, S., Rockström, J., Scheffer, M. and Walker, B. (2013), Multiscale regime shifts and planetary boundaries, Trends in Ecology & Evolution 28(7), 389-295.
  25. [25]  Illic, I., (1973). Energy and Equity. Harper & Row, Publishers: New York.
  26. [26]  Jones, G.A. and Warner, K.J. (2016), The 21st century population-energy-climate nexus, Energy Policy 93, 206-212.
  27. [27]  Kompanichenko, V. (2014), Emergence of biological organization through thermodynamic inversion, Frontiers in Bioscience 6, 208- 224.
  28. [28]  Krausmann, F., Erb, K.-H., Gingrich, S., Haberl, H., Bondeau, A., Gaube, V., Lauk, C., Plutzar, C. and Searchinger, T.D. (2013), Global human appropriation of net primary production doubled in the 20th century, Proceedings of the National Academy of Sciences 110, 10324-10329.
  29. [29]  Lammer, H., Selsis, F., Chassefière, E., Breuer, D., Grießmeier, J.-M., Kulikov, Y.N., Erkaev, N.V., Khodachenko, M.L., Biernat, H.K., Leblanc, F., Kallio, E., Lundin, R., Westall, F., Bauer, S.J., Beichman, C., Danchi, W., Eiroa, C., Fridlund, M., Gr?ller, H., Hanslmeier, A., Hausleitner, W., Henning, T., Herbst, T., Kaltenegger, L., Léger, A., Leitzinger, M., Lichtenegger, H.I.M., Liseau, R., Lunine, J., Motschmann, U., Odert, P., Paresce, F., Parnell, J., Penny, A., Quirrenbach, A., Rauer, H., Röttgering, H., Schneider, J., Spohn, T., Stadelmann, A., Stangl, G., Stam, D., Tinetti, G. and White, G.J. (2010), Geophysical and atmospheric evolution of habitable planets, Astrobiology 10(1), 45-68.
  30. [30]  Lewis, S.L. and Maslin, M.A. (2015), Defining the Anthropocene, Nature 519, 171-180.
  31. [31]  Li, B.-L. and Makarieva, A. (2008), Allometric scaling as an indicator of ecosystem state: a new approach. In: Petrosillo, I., Müller, F., Jones, K.B., Zurlini, G., Krauze, K., Victorov, S., Li, B.-L. and Kepner, W.G. (eds.), Use of landscape sciences for the assessment of environmental security, Springer-Verlag: Netherlands, pp. 107-117.
  32. [32]  Makarieva, A.M., Gorshkov, V.G. Li, B.-L., Chown, S.L., Reich, P.B. and Gavrilov, V.M. (2008), Mean mass-specific metabolic rates are strikingly similar across life’s major domains: Evidence for life’s metabolic optimum, Proceedings of the National Academy of Sciences 105(44), 16994-16999.
  33. [33]  Malthus, T.R. (1798), An Essay on the Principle of Population. Prometheus: London.
  34. [34]  Meadows, D.H., Meadows, D.L., Randers, J. and Behrens, W.W. (1972), The Limits to Growth: A Report for the Club of Rome’s Pro ject on the Predicament of Mankind, Universe Books: New York.
  35. [35]  National Aeronautics and Space Administration (NASA) (2016), Sun Fact Sheet, Available online at: http://nssdc.gsfc.nasa.gov/planetary/factsheet/sunfact.html.
  36. [36]  Odum, H.T. (1996), Environmental Accounting. John Wiley & Sons: New York.
  37. [37]  Pascal, R., Pross, E. and Sutherland, J.D. (2013), Towards an evolutionary theory of the origin of life based on kinetics and thermodynamics, Open Biology 3, 130156. DOI:10.1098/rsob.130156.
  38. [38]  Peixoto, J.P. and Oort, A.H. (1992), Physics of Climate, Springer-Verlag: New York.
  39. [39]  Rockström, J., Steffen, W., Noone, K., Persson, A., Chapin, III, F.S., Lambin, E., Lenton, T.M., Scheffer, M., Folke, C., Schellnhuber, H., Nykvist, B., De Wit, C.A., Hughes, T., van der Leeuw, S., Rodhe, H., Sorlin, S., Snyder, P.K., Costanza, R., Svedin, U., Falkenmark, M., Karlberg, L., Corell, R.W., Fabry, V.J., Hansen, J., Liverman, D., Richardson, K., Crutzen, P. and Foley. J.(2009), Planetary boundaries: exploring the safe operating space for humanity, Ecology and Society 14(2), 32. Available online at: http://www.ecologyandsociety.org/vol14/iss2/art32/.
  40. [40]  Running, S.W. (2012), A Measurable Planetary Boundary for the Biosphere, Science 337, 1458-1459.
  41. [41]  Sharma V. and Annila, A. (2007), Natural process - Natural selection, Biophysical Chemistry 127, 123-128.
  42. [42]  Sertorio, L. (1991), Thermodynamics of complex systems (An Introduction to Ecophysics), World Scientific: Singapore.
  43. [43]  Sertorio, L. and Tinetti, G. (2001), Available energy for life on a planet, with or without stellar radiation, Il Nuovo Cimento C 24(3), 421-444.
  44. [44]  Sertorio, L. and Renda, E. (2008), One hundred watt for the next billion years (in Italian: Cento watt per il prossimo miliardo di anni), Bollati Boringhieri:Torino.
  45. [45]  Sertorio, L. and Renda, E. (2009), Ecophysics (in Italian: Ecofisica), Bollati Boringhieri: Torino.
  46. [46]  Sertorio, L. and Renda, E. (2012), Orbits and life in the universe (in Italian: Orbite e vita nell’universo), Aracne Editrice: Roma.
  47. [47]  Smil, V. (2008), Energy in nature and society: general energetics of complex systems, Massachusetts Institute of Technology: Cambridge (USA).
  48. [48]  Smil, V. (2010), Science, energy, ethics, and civilization. In: Chiao, R.Y., Cohen, M.L., Leggett, A.J., Phillips, W.D. and Harper Jr., C.L. (eds.). Visions of Discovery: New Light on Physics, Cosmology and Consciousness, Cambridge University Press: Cambridge (UK), pp. 709-729.
  49. [49]  Steffen, W., Crutzen, P.J. and McNeill, J.R. (2007), The Anthropocene: are humans now overwhelming the great forces of nature, Ambio 36, 614-621.
  50. [50]  Steffen, W., Broadgate, W., Deutsch, L., Gaffney, O. and Ludwig, C. (2015), The trajectory of the Anthropocene: The Great Acceleration, The Anthropocene Review 2(1), 81-98.
  51. [51]  Steffen, W., Richardson, K., Rockström, J., Cornell, S.E., Fetzer, I., Bennett, E.M., Biggs, R., Carpenter, S.R., de Vries, W., de Wit, C.A., Folke, C., Gerten, D., Heinke, J., Mace, G.M., Persson, L.M., Ramanathan, V., Reyers, B. and Sörlin, S. (2015), Planetary boundaries: Guiding human development on a changing planet, Science 347(6223), 1259855. DOI:10.1126/science.1259855.
  52. [52]  Steffen, W., Leinfelder, R., Zalasiewicz, J., Waters, C.N., Williams, M., Summerhayes, C., Barnosky, A.D., Cearreta, A., Crutzen, P., Edgeworth, M., Ellis11, E.C., Fairchild, I.J., Galuszka, A., Grinevald, J., Haywood, A., Ivardo Sul, J., Jeandel, C., McNeill, J.R., Odada, E., Oreskes, N., Revkin, A., de B. Richter, D., Syvitski, J., Vidas, D., Wagreich, M., Wing, S.L., Wolfe, A.P. and Schellnhuber, H.J. (2016), Stratigraphic and Earth System approaches to defining the Anthropocene, Earth’s Future 4, 324-345.
  53. [53]  Tainter, J.A. (2008), The Collapse of Complex Societies, Cambridge University Press: Cambridge (UK).
  54. [54]  Tainter, J.A. and Patzek, T.W. (2012), Our Energy and Complexity Dilemma: Prospects for the Future. In: Tainter, J.A. and Patzek, T.W., Drilling Down - The Gulf Oil Debacle and Our Energy Dilemma, Springer-Verlag: New York, pp. 185-214.
  55. [55]  United Nations, Department of Economic and Social Affairs, Population Division (UN-DESA) (2015), World Population Prospects: The 2015 Revision, Key Findings and Advance Tables. Working Paper No. ESA/P/WP.241, Available online at: https://esa.un.org/unpd/wpp/publications/files/key_findings_wpp_2015.pdf.
  56. [56]  van Vuuren, D.P., Nakicenovic, N., Riahi, K., Brew-Hammond, A., Kammen, D., Modi, V., Nilsson, M. and Smith, K.R. (2008), An energy vision: the transformation towards sustainability — interconnected challenges and solutions, Current Opinion in Environmental Sustainability 4,18-34.
  57. [57]  Vernadsky, V.I. (1945), The biosphere and the noösphere, American Scientist 33, 1-12.
  58. [58]  Vitousek, P.M., Mooney, H.A., Lubchenco, J. and Melillo, J.M. (1997), Human domination of Earth’s ecosystems, Science 277, 494- 499.
  59. [59]  World Energy Council (WEC) (2013), World Energy Scenarios: Composing energy futures to 2050, World Energy Council: London.
  60. [60]  Zalasiewicz, J., Williams, M., Haywood, A. and Ellis, M. (2011), The Anthropocene: a new epoch of geological time? Philosophical Transaction of the Royal Society A 369, 835-841.
  61. [61]  Zalasiewicz, J., Waters, C.N., Williams, M., Barnosky, A.D., Cearreta, A., Crutzen, P., Ellis, E., Ellis, M.A., Fairchild, I.J., Grinevald, J., Haff, P.K., Hajdas, I., Leinfelder, R., McNeill, J., Odada, E.O., Poirier, C., Richter, D., Steffen, W., Summerhayes, C., Syvitski, J.P.M., Vidas, D., Michael Wagreich, M., Wing, S.L., Wolfe, A.P., An, Z. and Oreskes, N. (2015), When did the Anthropocene begin? A mid-twentieth century boundary level is stratigraphically optimal, Quaternary International 383, 196-203.