Skip Navigation Links
Journal of Environmental Accounting and Management
Dmitry Kovalevsky (editor), Jiazhong Zhang(editor)
Dmitry Kovalevsky (editor)

Climate Service Center Germany (GERICS), Helmholtz-Zentrum Hereon, Fischertwiete 1, 20095 Hamburg, Germany

Fax: +49 (0) 40 226338163 Email: dmitry.v.kovalevsky@gmail.com

Jiazhong Zhang (editor)

School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi Province 710049, China

Fax: +86 29 82668723 Email: jzzhang@mail.xjtu.edu.cn


Soil Loss as a Negative Externality in the Emergy Accounting: Case Study of an Agricultural Commodities Municipality in the Brazilian Savannah

Journal of Environmental Accounting and Management 4(2) (2016) 129--147 | DOI:10.5890/JEAM.2016.06.004

Luz Selene Buller$^{1}$, Gustavo Bayma-Silva$^{2}$, Enrique Ortega$^{1}$, Ivan Bergier$^{3}$

$^{1}$ Ecological Engineering Laboratory, Food Engineering School, State University of Campinas, Campinas, Brazil

$^{2}$ Embrapa Satellite Monitoring, Brazilian Agricultural Research Corporation, Campinas, Brazil

$^{3}$ Biomass Conversion Laboratory, Embrapa Pantanal, Brazilian Agricultural Research Corporation, Corumbá, Brazil

Download Full Text PDF

 

Abstract

Brazilian agriculture has become prominent in the world in the last decades, especially by virtue of the expansion of agricultural commodities in the Cerrado biome with about 204 million of hectares in the central part of the country. From the 1960's, the Cerrado has been occupied by migrants from southern Brazil who have converted the native vegetation (mostly woody savannas) into extensive pastures and monocrops. From coffee and cotton in the initial Cerrado’s agricultural occupation to soybean, corn, cattle and swine nowadays, the landscape suffered a huge transformation and several liabilities related to ecosystem services loss are emerging. São Gabriel do Oeste is a typical agricultural municipality of the Cerrado and, therefore, can be considered as representative of the current agricultural model. Along with climate change impacts of the conventional agriculture through greenhouse gas emissions, soil loss is worrying because it is not truly renewable if incorrectly managed. The emergy assessment of the agricultural system, including soil loss as a nonrenewable flow, was compared to the assessment including soil loss as a negative externality to better understand its impact on the emergy indicators. Soil loss and GHG emissions accounts for 95% of the total externalities and soil loss alone, for 46%. Moreover, different levels of soil loss were accounted for to infer its impact on the productive and economic systems. In addition, to conclude the assessment, the native forest area to compensate the dependence of the system on economy resources was calculated. The additional native vegetation area reaches 61% of the municipality area and the cost to the native forestry recovery is estimated in 1,039 EM$.ha-1·year-1. The results here presented can be useful for new agricultural public policies related to the ecosystem services compensation and payment mechanisms taking into account the extent and magnitude of ecosystem services loss.

Acknowledgments

This work was partially funded by MCTI/CNPq/Repensa, grant number 562441/2010-7, Embrapa/Macroprograma 2, grant number 02.11.05.002 and MCTI/CNPq Project, grant Number 403161/2013-4. Special thanks to Eliandres Pereira Saldanha (Coordinator of SEMADE’s Regional Research and Statistics Department) and Dr. Sérgio Galdino (Embrapa Satellite Monitoring). The first author gratefully acknowledges the PhD scholarship from the Coordination for the Improvement of Higher Education Personnel (CAPES, Brazil). We thank the editors and anonymous reviewers for valuable recommendations that contributed to the improvement of this work.

References

  1. [1]  Abbey, L.A., Baer, B. and Filizzola, M. (2006), Growth efficiency, and equity: The impact of agribusiness and land reform in Brazil, Latin American Business Review 7: 93-115.
  2. [2]  Agostinho, F. and Pereira, L. (2013), Support area as an indicator of environmental load: Comparison between Embodied Energy, Ecological Footprint, and Emergy Accounting methods, Ecological Indicators 24: 494-503.
  3. [3]  Assis, D.S., Costa, J.R.S., Gomes, J.B.V. and Tôsto, S.G. (2003), Zoneamento agroecológico do Município de São Gabriel do Oeste, MS: referencial para o planejamento, gestão e monitoramento ambiental, Embrapa Solos, Rio de Janeiro. pp177. (in Portuguese).
  4. [4]  Bergier, I., Goulart, T., Monteiro, H., Franco, E., Rech, R., Silva, D., and Siilva, V. P. (2012), Fertirrigação e agricultura de baixa emissão de carbono: resultados do projeto CNPq/REPENSA em São Gabriel do Oeste, Boletim de Pesquisa e Desenvolvimento, Embrapa Pantanal, Corumbá. pp. 28. (in Portuguese).
  5. [5]  Bertolini, D., Lombardi-Neto, F. and Drugowich, M. I. (1993), Programa estadual de microbacias hidrográficas, Manual técnico 38 (1), Coordenadoria de Assistência Técnica Integral, Campinas, SP. (in Portuguese).
  6. [6]  Bertoni, J. and Lombardi-Neto, F. (1999), Conservação do solo (4 ed.), São Paulo: ìcone. (in Portuguese).
  7. [7]  Beuchle, R., Grecchi, R.C., Shimabukuro, Y.E., Seliger, R., Eva, H.D., Sano, E. and Achard, F. (2015). Land cover changes in the Brazilian Cerrado and Caatinga biomes from 1990 to 2010 based on a systematic remote sensing sampling approach. Applied Geography 58: 116-127.
  8. [8]  Brandt-Williams, S. (2002), Handbook of emergy evaluation: a compendium of data for emergy computation issued in a series of folios. Folio No. 4 - Emergy of Florida Agriculture. Center for Environmental Policy, Environmental Engineering Sciences, University of Florida, Gainesville, FL, 40 pp. Downloadable at /www.emergysystems.org.
  9. [9]  Brown, M.T. and Ulgiati, S. (2004), Emergy Analysis and Environmental Accounting, In: Cleveland, C. (Ed.), Encyclopedia of Ener gy. Academic Press, Elsevier, Oxford, UK, pp. 329-354.
  10. [10]  Buller, L. S. (2016), Diagnóstico emergético das mudanças de uso da terra e proposta de recuperação de uma área do Cerrado, PhD Thesis, State University of Campinas, Campinas. SP, Brasil. (in Portuguese).
  11. [11]  Buller, L. S., Bayma-Silva, G., Zanetti, M., Ortega, E., De Moraes, A., Goulart, T. and Bergier, I. (2016), Historical Land-Use Changes in São Gabriel do Oeste at the Upper Taquari River Basin, In: Bergier, I. and Assine, M. L. (eds.) Dynamics of the Pantanal Wetland in South America, Springer International Publishing. pp. 191-208.
  12. [12]  Buller, L. S., Bergier, I., Ortega, E., Moraes, A., Bayma-Silva, G. and Zanetti, M. R. (2015), Soil improvement and mitigation of greenhouse gas emissions for integrated crop–livestock systems: Case study assessment in the Pantanal savanna highland, Brazil, Agricultural Systems 137: 206-219.
  13. [13]  Buranakarn, V. (1998), Evaluation of recycling and reuse of building materials using the emergy analysis method, PhD Thesis, University of Florida, Gainesville. FL, USA.
  14. [14]  Buschbacher, R. (2000), Expansão agrícola e perda da biodiversidade no cerrado: origens históricas e o papel do comércio internaciona,. WWF, Brasil. pp. 99. (in Portuguese).
  15. [15]  Cavalett, O., de Queiroz, J.F. and Ortega, E. (2006), Emergy assessment of integrated production systems of grains, pig and fish in small farms in the South Brazil, Ecological Modelling 193(3-4): 205-224.
  16. [16]  Cohen, M. J., Brown, M. T. and Shepherd, K. D. (2006), Estimating the environmental costs of soil erosion at multiple scales in Kenya using emergy synthesis, Agriculture Ecosystems & Environment, 114(2-4): 249-269.
  17. [17]  D'Odorico, P., Laio, F., Porporato, A., Ridolfi, L., Rinaldo, A. and Rodriguez-Iturbe, I. (2010), Ecohydrology of Terrestrial Ecosystems, BioScience 60(11): 898-907.
  18. [18]  Fischer, J., Abson, D. J., Butsic, V., Chappell, M. J., Ekroos, J., Hanspach, J., and von Wehrden, H. (2014), Land Sparing Versus Land Sharing: Moving Forward. Conservation Letters 7(3): 149-157.
  19. [19]  Galdino, S. (2012), Estimativa da perda de terra sob pastagens cultivadas em solos arenosos da bacia hidrográfica do alto Taquari - MS/MT. PhD Thesis, State University of Campinas, Campinas, SP, Brasil. (in Portuguese).
  20. [20]  Galdino, S. (2015), Distribução espacial do Fator Topográfico da RUSLE na Bacia do Alto Paraguai, utilizando o software LS-TOOL, Boletim de Pesquisa, Embrapa Monitoramento por Satélite, Campinas. pp. 19. (in Portuguese).
  21. [21]  Galdino, S., Risso, A., Soriano, B.A., Vieira, L.M. and Padovani, C.R. (2006), Potencial erosivo da Bacia do Alto Taquari, In: Galdino, Vieira, L.M. and Pellegrin, L.A. (eds.), Impactos ambientais e socioecoômicos na Bacia do Rio Taquari - Pantanal. Embrapa Pantanal, Corumbá. pp. 105-117. (in Portuguese).
  22. [22]  Galdino, S. and Vieira, L.M. (2006), A Bacia do Rio Taquari e seus problemas ambientais e socioeconômicos, In: Galdino, Vieira, L.M. and Pellegrin, L.A. (eds.), Impactos ambientais e socioeco?micos na Bacia do Rio Taquari - Pantanal. Embrapa Pantanal, Corumbá. pp. 29-43. (in Portuguese).
  23. [23]  IBGE(a), Brazilian Institute of Geography and Statistics, Available at: http://www.ibge.gov.br/home/estatistica/pesquisas/pesquisa_resultados.php?id_pesquisa=46.
  24. [24]  IBGE(b), Brazilian Institute of Geography and Statistics, Available at: http://www.ibge.gov.br/webcart/tabelas.php.
  25. [25]  Lapola, D.M., Martinelli, L.A., Peres, C.A., Ometto, J.P.H.B., Ferreira, M.E., Nobre, C.A., and Vieira, I.C.G. (2014), Pervasive transition of the Brazilian land-use system, Nature Climate Change 4(1): 27-35.
  26. [26]  Meirelles, M.L. and Henriques, R.P. (1992), Produção primária líquida em área queimada e não queimada de Campo sujo de cerrado (Planaltina-DF), Acta Botanica Brasileira 6: 3-13. (in Portuguese).
  27. [27]  MMA. (2015), Brasil. Mapeamento do uso e cobertura do Cerrado: Projeto TerraClass Cerrado 2013, Ministério do Meio Ambiente, Brasília. (in Portuguese).
  28. [28]  Odum, H.T. (1996), Environmental Accounting, Emergy and Environmental Decision Making. John Wiley & Sons, NY. 370 pp.
  29. [29]  Odum, H.T., Brown, M. T. and Brandt-Williams, S. L. (2000), Handbook of emergy evaluation: a compendium of data for emergy computation issued in a series of folios. Folio No. 1 - Introduction and Global Budget, Center for Environmental Policy, Environmental Engineering Sciences, University of Florida, Gainesville, FL, 16 pp. Downloadable at /www.emergysystems.org.
  30. [30]  Odum, H.T., Brown, M.T., McGrane, G., Woithe, R.D., Lopez, S. and Bastianoni, S. (1995), Emergy evaluation of energy policies for Florida, Final Report, Center for Environmental Polilcy, Department of Environmental Engineering Sciences, University of Florida, FL, USA.
  31. [31]  Ortega, E., Anami, M. and Diniz, G. (2002), Certification of food products using emergy analysis, Paper presented at the Proceedings of III International Workshop Advances in Energy Studies, Porto Venere, Itália, 227-237.
  32. [32]  Ortega, E., Cavalett, O., Bonifácio, R. and Watanabe, M. (2005), Brazilian Soybean Production: Emergy Analysis with an Expanded Scope, Bulletin of Science, Technology & Society 25(4): 323-334.
  33. [33]  Pereira, L., Zucaro, A., Ortega, E. and Ulgiati, S. (2013), Wealth, trade and the environment: Carrying capacity, economic performance and wellbeing in Brazil and Italy, Journal of Environmental Accounting and Management 1(2): 159-188.
  34. [34]  Power, A.G. (2010), Ecosystem services and agriculture: tradeoffs and synergies, Philosophical Transactions of the Royal Society BBiological Sciences 365(1554): 2959-2971.
  35. [35]  Prado-Jatar, M.A. and Brown, M.T. (1997), Interface ecosystems with an oil spill in a Venezuelan tropical savannah, Ecological Engineering 8(1), 49-78.
  36. [36]  Pretty, J.N., Brett, C., Gee, D., Hine, R.E., Mason, C.F., Morison, J.I.L., and van der Bijl, G. (2000), An assessment of the total external costs of UK agriculture, Agricultural Systems 65(2): 113-136.
  37. [37]  Pulselli, R.M., Simoncini, E., Ridolfi, R. and Bastianoni, S. (2008), Specific emergy of cement and concrete: An energy-based appraisal of building materials and their transport., Ecological Indicators 8(5): 647-656.
  38. [38]  Raugei, M., Bargigli, S. and Ulgiati, S. (2005), Emergy “Yield” Ratio – Problems and Misapplications, In: Brown, M.T., Campbell, D., Comar, V., Huang, S.L., Rydberg, T., Tilley, D.R., and Ulgiati, S., (eds), Emergy Synthesis. Theory and Applications of the Emergy Methodology – 3. The Center for Environmental Policy, University of Florida, Gainesville, FL. pp. 159-164.
  39. [39]  Rockstrom, J., Steffen, W., Noone, K., Persson, A., Chapin, F.S., Lambin, E.F. and Foley, J.A. (2009), A safe operating space for humanity, Nature 461(7263): 472-475.
  40. [40]  Spera, S.A., Galford, G.L., Coe, M.T., Macedo, M.N. and Mustard, J.F. (2016), Land-Use Change Affects Water Recycling in Brazil's Last Agricultural Frontier, Global Change Biology, n/a-n/a.
  41. [41]  Teixeira, M.B. (2012), Análise do impacto ambiental de unidades agropecuárias. Estudo de caso: microbacia do rio Pinhal, Santa Catarina. MSc Dissertation, State University of Campinas, Campinas, SP, Brasil. (in Portuguese).
  42. [42]  Ulgiati, S., Bargigli, S. and Raugei, M. (2005), Dotting the I’s and Crossing the T’s of Emergy Synthesis: Material Flows, Information and Memory Aspects, and Performance Indicators, In: Brown, M.T., Campbell, D., Comar, V., Huang, S.L., Rydberg, T., Tilley, D.R., and Ulgiati, S., (eds.), Emergy Synthesis. Theory and Applications of the Emergy Methodology – 3. The Center for Environmental Policy, University of Florida, Gainesville, FL, pp. 199-213.
  43. [43]  Ulgiati, S. and Brown, M. T. (2014), Labor and Services as Information Carriers in Emergy-LCA Accounting, Journal of Environmental Accounting and Management 2(2): 163-170.
  44. [44]  Ulgiati, S., Brown, M. T., Bastianoni, S. and Marchettini, N. (1995), Emergy-based indices and ratios to evaluate the sustainable use of resources, Ecological Engineering 5(4): 519-531.
  45. [45]  USGS. (2004), Shuttle Radar Topography Mission, 1 Arc Second scene SRTM_u03_n008e004, Unfilled Unfinished 2.0, Global Land Cover Facility, University of Maryland, College Park, Maryland, February 2000.
  46. [46]  Watanabe, M.D.B. and Ortega, E. (2014), Dynamic emergy accounting of water and carbon ecosystem services: A model to simulate the impacts of land-use change, Ecological Modelling 271, 113-131.
  47. [47]  Wischmeier, W.H. and Smith, D.D. (1978), Predicting rainfall erosion losses: A guide to conservation planning, United States Department of Agriculture, Washington, D.C.
  48. [48]  WWF and CI (2009), Monitoramento das alterações da cobertura vegetal e uso do Solo na Bacia do Alto Paraguai – Porção Brasileira – Período de Análise: 2002 a 2008, CI - Conservação Internacional, ECOA - Ecologia e Ação, Fundación AVINA, Instituto SOS Pantanal, WWF- Brasil, Brasília, DF. (pp. 58). (in Portuguese).
  49. [49]  Zhang, H.M., Yang, Q.K., Li, R., Liu, Q.R., Moore, D., He, P. and Geissen, V. (2013), Extension of a GIS procedure for calculating the RUSLE equation LS factor. Computers and Geosciences 52, 177-188.