Skip Navigation Links
Journal of Environmental Accounting and Management
António Mendes Lopes (editor), Jiazhong Zhang(editor)
António Mendes Lopes (editor)

University of Porto, Portugal

Email: aml@fe.up.pt

Jiazhong Zhang (editor)

School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi Province 710049, China

Fax: +86 29 82668723 Email: jzzhang@mail.xjtu.edu.cn


Adult Chronic Exposure to Neurotoxic Metals Associated with Atmospheric Aerosols: A Case Study in The Urban Area of Turin (NW Italy)

Journal of Environmental Accounting and Management 4(1) (2016) 87--99 | DOI:10.5890/JEAM.2016.03.008

Marco Casazza$^{1}$, Valter Maurino$^{2}$, Mery Malandrino$^{2}$

$^{1}$ University ‘Parthenope’ of Naples, Department of Science and Technology, Centro Direzionale, Isola C4, 80143, Naples, Italy

$^{2}$ Università degli Studi di Torino, Department of Chemistry, Via P. Giuria 5, 10125, Torino, Italy

Download Full Text PDF

 

Abstract

Particulate Matter (PM) pollution still represents a great concern for its adverse effects on human health. Among the emerging risks, the neurotoxicity of PM-associated metals has been evidenced by the scientific literature. Since PM inhalation plays an important role with respect to its toxicity, there is a recognized need for improving the studies with respect to its deposition sites. This work is focused on the assessment of PM10- associated metals in the urban environment of Turin (NW Italy), one of the most polluted European areas. Data of PM10-associated metals mass size distribution, percentage repartition associated to the respiratory apparatus, relative concentration peaks, together with preferential deposition sites and the daily inhaled dose have been calculated. The analyzed metals were: As, Cd, Co, Cr, Cu, Fe, Mn, Mo, Ni, Pb, Sn, V and Zn. The data are limited, considering a precautionary approach, to the winter season, when the intensity and number of sources is greater and only in the case of stable good weather conditions, when the atmospheric removal processes have a more limited impact on the aerosol dynamics. The results show that the element concentrations in Torino atmospheric PM are similar to those of other considered European towns. The measures evidence a preferential association of each metal with different areas of the respiratory apparatus Furthermore, ordering the analyzed metals with respect to the daily inhaled dose, from higher to lower, we have: Fe, Zn, Sn, Cd, Mn, Cu, Pb, Ni, Cr, Mo, V, As and Co. Even if the risk doesn’t seem to be significant up to now (apart from Cr), the evolving knowledge on the effects of chronic sub-threshold exposure might give a different evidence in the future. PM10 size repartition measurement, together with the analysis of PM10-associated compounds, could well intermittently complement the routine air quality measures with the purpose of increasing the present body of knowledge with respect to PM neurotoxicity, allowing to improve both the existing risk assessment procedures and the public health management.

References

  1. [1]  Agenzia Regionale per la Protezione Ambientale del Piemonte (ARPA Piemonte). (2010), Environmental state report 2010 http://rsaonline.arpa.piemonte.it/rsa2010/.
  2. [2]  Allen, J.L., Oberdorster, G., Morris-Schaffer, K., Wong, C., Klocke, C., Sobolewski, M., Conrad, K., Mayer-Proschel, M. and Cory- Slecht. D.A. (2015), Developmental neurotoxicity of inhaled ambient ultrafine particle air pollution: Parallels with neuropathological and behavioral features of autism and other neurodevelopmental disorders, NeuroToxicology, In press. doi:10.1016/j.neuro.2015.12.014.
  3. [3]  Alzheimer's Association (2012), Alzheimer's Disease Facts and Figures, Alzheimer's & Dementia 8(2): 131-168.
  4. [4]  Alzheimer's Disease International (ADI) (2010), Alzheimer's Disease International World Alzheimer Report 2010 The Global Economic Impact of Dementia. Alzheimer's Disease International: London.
  5. [5]  Amato, F., Alastuey, A., Karanasiou, A., Lucarelli, F., Nava, S., Calzolai, G., Severi, M., Becagli, S., Gianelle, V.L., Colombi, C., Alves, C., Custódio, D., Nunes, T., Cerqueira, M., Pio, C., Eleftheriadis, K., Diapouli, E., Reche, C., Minguillón, M.C., Manousakas, M., Maggos, T., Vratolis, S., Harrison, R.M. and Querol, X. (2015), AIRUSE-LIFE+: A harmonized PM speciation and source apportionment in 5 Southern European cities, Atmospheric Chemistry and Physic Discussion 15: 23989-24039.
  6. [6]  Andlin-Sobocki, P., Jönsson, B., Wittchen, H.-U. and Olesen, J. (2005), Cost of disorders of the brain in Europe, European Journal of Neurology 12(s1): 1-27.
  7. [7]  Becerra, T.A., Wilhelm, M., Olsen, J., Cockburn, M. and Ritz, B. (2013), Ambient air pollution and autism in Los Angeles County, California, Environmental Health Perspectives 121: 380-386.
  8. [8]  Beyersmann, D., Hartwig, A. (2008), Carcinogenic metal compounds: recent insight into molecular and cellular mechanisms, Archives of Toxicology 82: 493-512.
  9. [9]  Billet, S., Abbas, I., Le Goff, J., Verdin, A., Andre, V., Lafargue, P.E., Hachimi, A., Cazier, F., Sichel, F., Shirali, P., Garcon, G.(2008), Genotoxic potential of polycyclic aromatic hydrocarbons-coated onto airborne particulate matter (PM(2.5)) in human lung epithelial a549 cells, Cancer Letters 270: 144-155.
  10. [10]  Block, M.L., Wu, X., Pei, Z., Li, G., Wang, T., Qin, L., Wilson, B., Yan, J., Hong, J.S. and Veronesi, B. (2004), Nanometer size diesel exhaust particles are selectively toxic to dopaminergic neurons: the role of microglia, phagocytosis, and NADPH oxidase, The FASEB Journal 18: 1618-1620.
  11. [11]  Bruggemann, E., Gerwig, H., Gnauk, T., Muller, K. and Herrmann, H. (2009), Influence of seasons, air mass origin and day of the week on size-segregated chemical composition of aerosol particles at a kerbside, Atmospheric Environment 43: 2456-2463.
  12. [12]  Calderón-Garcidueñas, L., Solt, A.C., Henríquez-Roldán, C., Torres-Jardón, R., Nuse, B., Herritt, L., Villarreal-Calderón, R., Osnaya, N., Stone, I., García, R, Brooks, D.M., González-Maciel, A., Reynoso-Robles, R., Delgado-Chávez, R. and Reed, W. (2008), Long-term air pollution exposure is associated with neuroinflammation, an altered innate immune response, disruption of the blood brain barrier, ultrafine particulate deposition, and accumulation of amyloid beta-42 and alpha synuclein in children and young adults, Toxicologic Pathology 36: 289-310.
  13. [13]  Calderón-Garcidueñas, L., Serrano-Sierra, A., Torres-Jardón, R., Zhu, H., Yuan, Y., Smith, D., Delgado-Chávez, R., Cross, J.V., Cortina, H.M., Kavanaugh, M. and Guilarte, T.R. (2013), The impact of environmental metals in young urbanites' brains, Experimental and Toxicologic Pathology 65(5): 503-511.
  14. [14]  Casazza, M. and Piano, A. (2003), Some remarks on PM2.5, Annals of Geophysics 46(2): 241-246.
  15. [15]  Casazza, M., Gilli, G., Piano, A. and Alessio, S. (2013), Thirty-years assessment of size-fractionated particle mass concentrations in a polluted urban area and its implications for the regulatory framework, Journal of Environmental Accounting and Management 1(3): 259-267.
  16. [16]  Charlet, L., Chapron, Y., Faller, P., Kirsch, R., Stone, A.T. and Baveye, P.C. (2012), Neurodegenerative diseases and exposure to the environmental metals Mn, Pb, and Hg, Coordination Chemistry Reviews 256: 2147-2216.
  17. [17]  Cirera, L., Rodriguez, M., Gimenez, J., Jimenez, E., Saez, M., Guillen, J.J., Medrano, J., Martinez-Victoria, M.A., Ballester, F., Moreno-Grau, S. and Navarro, C. (2009), Effects of public health interventions on industrial emissions and ambient air in Cartagena, Spain, Environmental Science and Pollution Research 16: 152-161.
  18. [18]  de Kok, T.M., Hogervorst, J.G., Briede, J.J., van Herwijnen, M.H., Maas, L.M., Moonen, E.J., Driece, H.A. and Kleinjans, J.C. (2005), Genotoxicity and physicochemical characteristics of traffic-related ambient particulate matter, Environmental and Molecular Mutagenesis 46: 71-80.
  19. [19]  de Lau, L.M.L. and Breteler, M.M.B. (2006), Epidemiology of Parkinson's disease, The Lancet Neurology 5(6): 525-535.
  20. [20]  Dongarrà G., Manno E., Varrica D. and Vultaggio, M. (2007), Mass levels, crustal component and trace elements in PM10 in Palermo, Italy, Atmospheric Environment 41: 7977-7986.
  21. [21]  Dorsey, E.R., Constantinescu, R., Thompson, J.P., Biglan, K.M., Holloway, R.G., Kieburtz, K., Marshall, F.J., Ravina, B.M., Schifitto, G., Siderowf, A. and Tanner, C.M. (2007), Projected number of people with Parkinson disease in the most populous nations, 2005 through 2030, Neurology 68(5): 384-386.
  22. [22]  Franco Suglia, S., Gryparis, A., Wright, R.O., Schwartz, J. and Wright, R.J. (2008), Association of black carbon with cognition among children in a prospective birth cohort study, American Journal of Epidemiology 167: 280-286.
  23. [23]  Edwards, T. and Myers, J. (2007), Environmental exposures and gene regulation in disease etiology, Environmental Health Perspectives 115: 1264-1270.
  24. [24]  European Environmental Agency (2014), Data and maps. http://www.eea.europa.eu/data-and-maps.
  25. [25]  European Parliament and Council (2008), Directive 2008/50/EC on ambient air quality and cleaner air for Europe. European Parliament and Council: Bruxelles.
  26. [26]  Gillespie, P., Tajub, J., Lippmann, M., Chen L.C. and Veronesi, B. (2013), Particulate matter neurotoxicity in culture is sizedependent NeuroToxicology 36: 112-117.
  27. [27]  Gomez-Mejiba, S.E., Zhai, Z., Akram, H., Pye, Q.N., Hensley, K., Kurien, B.T., Scofield, R.H. and Ramirez, D.C. (2009), Inhalation of environmental stressors & chronic inflammation: Autoimmunity and neurodegeneration, Mutation Research 674: 62-72.
  28. [28]  Gualtieri, M., Ovrevik, J., Holme, J.A., Perrone, M.G., Bolzacchini, E., Schwarze, P.E. and Camatini, M. (2010), Differences in cytotoxicity versus pro-inflammatory potency of different PM fractions in human epithelial lung cells, Toxicology in Vitro 24: 29-39.
  29. [29]  Gustavsson, A., Svensson, M., Jacobi, F., Allgulander, C., Alonso, J., Beghi, E., Dodel, R., Ekman, M., Faravelli, C., Fratiglioni, L., Gannon, B., Hilton Jones, D., Jennum, P., Jordanova, A., Jönsson, L., Karampampa, K., Knapp, M., Kobelt, G., Kurth, T., Lieb, R., Linde, M., Ljungcrantz, C., Maercker, A., Melin, B., Moscarelli, M., Musayev, A., Norwood, F., Preisig, M., Pugliatti, M. and Rehm, J. (2011), Cost of disorders of the brain in Europe 2010, European Neuropsychopharmacology 21(10): 718-779.
  30. [30]  Harrison, R.M., Jones, A.M., Gietl, J., Yin, J. and Green, D.C. (2012), Estimation of the contributions of brake dust, tire wear, and resuspension to nonexhaust traffic particles derived from atmospheric measurements, Environmental Science & Technology 46: 6523-6529.
  31. [31]  Heal M.R., Hibbs L.R., Agius R.M. and Berland I.J. (2005), Total and water-soluble metal content of urban background PM10, PM2.5 and black smoke in Edinburgh, UK, Atmospheric Environment 39: 1417-1430.
  32. [32]  Hetland, R.B., Cassee, F.R., Refsnes, M., Schwarze, P.E., Lag, M., Boere, A.J. and Dybing, E. (2004), Release of inflammatory cytokines, cell toxicity and apoptosis in epithelial lung cells after exposure to ambient air particles of different size fractions, Toxicology in Vitro 18: 203-212.
  33. [33]  Hsiao, W.L.W., Mo, Z., Fang, M., Shi, X. and Wang, F. (2000), Cytotoxicity of PM2.5 and PM2.5-10 ambient air pollutants assessed by the MTT and the Comet assays, Mutagenic Research 471: 45-55.
  34. [34]  Johansson C., Norman M. and Burman, L. (2009), Road traffic emission factors for heavy metals, Atmospheric Environment 43: 4681-4688.
  35. [35]  Kawanaka, Y., Matsumoto, E., Sakamoto, K. and Yun, S.J. (2011), Estimation of the contribution of ultrafine particles to lung deposition of particle-bound mutagens in the atmosphere, Science of the Total Environment 409: 1033-1038.
  36. [36]  Krzyzanowski, M. (2005), Health effects of transport-related air pollution: Summary for policy-makers, World Health Organization Regional Office for Europe: Copenhagen
  37. [37]  Lall, R., Kendall, M., Ito, K. and Thurston, G.D. (2005), Estimation of historical PM2.5 exposures for health effects assessment Atmospheric Environment 38: 5217-5226.
  38. [38]  Levesque, S., Surace, M.J., McDonald, J. and Block, M.L. (2011), Air pollution & the brain: Subchronic diesel exhaust exposure causes neuroinflammation and elevates early markers of neurodegenerative disease, Journal of Neuroinflammation 8: 105-114.
  39. [39]  Lovell, M.A., Robertson, J.D., Teesdale, W.J., Campbell, J.L. and Markesbery, W.R. (1998), Copper, iron and zinc in Alzheimer's disease senile plaques, Journal of the Neurological Sciences 158: 47-52.
  40. [40]  Lucchini, R.G., Dorman, D.C., Elder, A. and Veronesi, B. (2012), Neurological impacts from inhalation of pollutants and the nosebrain connection, NeuroToxicology 33(4): 838-841.
  41. [41]  Malandrino, M., Casazza, M., Abollino, O., Minero, C. and Maurino, V. (2016), Size resolved metal distribution in the PM matter of the city of Turin (Italy), Chemosphere 147: 477-489.
  42. [42]  Maté, T., Guaita, R., Pichiule, M., Linares, C. and Diaz, J. (2010), Short-term effect of fine particulate matter (PM2.5) on daily mortality due to diseases of the circulatory system in Madrid (Spain), Science of the Total Environment 408: 5750-5757.
  43. [43]  Migliore, L. and Coppedè, F. (2009), Environmental-induced oxidative stress in neurodegenerative disorders and aging, Mutation Research 674: 73-84.
  44. [44]  Newman, N.C., Ryan, P., LeMasters, G., Levin, L., Benstein, D., Hershey, G.K., Lockey, J.E., Villareal, M., Reponen, T., Grinshpun, S., Sucharew, H. and Dietrich, K.N. (2013), Traffic-related air pollution exposure in the first year of life and behavioral scores at 7 years of age, Environmental Health Perspectives 121: 731-736.
  45. [45]  Noll, K.E. and Pilat, M.J. (1971), Size distribution of atmospheric giant particles, Atmospheric Environment 5: 527-540.
  46. [46]  Oberdörster, G., Sharp, Z., Atudorei, V., Elder, A., Gelein, R., Kreyling, W. and Cox, C. (2004), Translocation of inhaled ultrafine particles to the brain. The potential risks of nanomaterials: a review carried out for ECETOC, Inhalation Toxicology 16: 437-445.
  47. [47]  O'Brien, J.A., Ward, A., Michels, S.L., Tzivelekis, S. and Brandt, N.J. (2009), Economic burden associated with Parkinson Disease, Psychiatric Times. Available online: http://www.psychiatrictimes.com/cerebrovascular-diseases/economic-burden-associatedparkinson- disease.
  48. [48]  Olesen, J. and Leonardi, M. (2003), The burden of brain diseases in Europe, European Journal of Neurology 10(5): 471-477.
  49. [49]  Pasquill, F. (1974), Atmospheric diffusion, Ellis Horwood Limited: Chirchester.
  50. [50]  Poschl, U. (2005), Atmospheric aerosols: composition, transformation, climate and health effects, Angewandte Chemie International Edition 44: 7520-7540.
  51. [51]  Power, M.C., Weisskopf, M.G., Alexeeff, S.E., Coull, B.A., Spiro, A. and Schwartz, J. (2011), Traffic related air pollution and cognitive function in a cohort of older men, Environmental Health Perspectives 119: 682-687.
  52. [52]  Querol X., Alastuey A., Rodriguez S., Plana F., Ruiz C.R., Cots N., Massagué, G. and Puig, O. (2001), PM10 and PM2.5 source apportionment in the Barcelona Metropolitan area, Catalonia, Spain, Atmospheric Environment 35: 6407-6419.
  53. [53]  Romanazzi, V., Casazza, M., Malandrino, M., Maurino, V., Piano, A., Schilirò, T. and Gilli, G. (2014), PM10 size distribution of metals and environmental-sanitary risk analysis in the city of Torino, Chemosphere 112: 210-216.
  54. [54]  Stone, E.A., Zhou, J.B., Snyder, D.C., Rutter, A.P., Mieritz, M. and Schauer, J.J. (2009), A comparison of summertime secondary organic aerosol source contributions at contrasting urban locations, Environmental Science & Technology 43: 3448-3454.
  55. [55]  Tin-Tin-Win-Shwe, Mitsushima, D., Yamamoto, S., Fukushima, A., Funabashi, T., Kobayashi, T. and Fujimaki, H. (2008), Changes in neurotransmitter levels and proinflammatory cytokine mRNA expressions in the mice olfactory bulb following nanoparticle exposure, Toxicology and Applied Pharmacology 226: 192-198.
  56. [56]  Toscano G., Moret I., Gambaro A., Barbante C. and Capodaglio G. (2011), Distribution and seasonal variability of trace elements in atmospheric particulate in the Venice Lagoon, Chemosphere 85: 1518-1524.
  57. [57]  Traversi, D., Degan, R., De Marco, R., Gilli, G., Pignata, C., Ponzio, M., Rava, M., Sessarego, F., Villani, S. and Bono, R. (2008), Mutagenic properties of PM2.5 air pollution in the Padana Plain (Italy) before and in the course of XX Winter Olympic Games of "Torino 2006", Environment International 34: 966-970.
  58. [58]  Traversi, D., Degan, R. De Marco, R., Gilli, G., Pignata, C., Villani, S. and Bono, R. (2009), Mutagenic properties of PM2.5 urban pollution in the Northern Italy: The nitro-compounds contribution, Environment International 35: 905-910.
  59. [59]  Traversi, D., Alessandria, L., Schilirò, T., Chiadò Piat, S. and Gilli, G. (2010), Meteo-climatic conditions influence the contribution of endotoxins to PM10 in an urban polluted environment, Journal of Environmental Monitoring 12: 484-490.
  60. [60]  US Environmental Protection Agency (EPA) (1989), Risk assessment guidance for superfund volume I human health evaluation manual (Part A), U.S. Environmental Protection Agency: Washington, DC.
  61. [61]  US Environmental Protection Agency (EPA) (1996), Air quality criteria for particulate matter, U.S. Environmental Protection Agency: Washington DC.
  62. [62]  US Environmental Protection Agency (EPA) (1998), Guidelines for Neurotoxicity Risk Assessment, U.S. Environmental Protection Agency: Washington DC.
  63. [63]  US Environmental Protection Agency (EPA) (2009), Risk assessment guidance for superfund volume I: human health evaluation manual (Part F, supplemental guidance for inhalation risk assessment), U.S. Environmental Protection Agency: Washington, DC.
  64. [64]  US Environmental Protection Agency (EPA) (2011), Exposure Factors Handbook, U.S. Environmental Protection Agency: Washington DC.
  65. [65]  Vecchi R., Marcazzan G. and Valli G. (2007), A study on nighttime-daytime PM10 concentration and elemental composition in relation to atmospheric dispersion in the urban area of Milan (Italy), Atmospheric Environment 41: 2136-2144.
  66. [66]  Veronesi, B., Makwana, O., Pooler, M. and Chen, L.C. (2005), Effects of subchronic exposures to concentrated ambient particles. VII. Degeneration of dopaminergic neurons in Apo E–/– mice, Inhalation Toxicology: International Forum for Respiratory Research 17: 235-241.
  67. [67]  Wang, G. and Fowler, B.A. (2008), Roles of biomarkers in evaluating interactions among mixtures of lead, cadmium and arsenic, Toxicology and Applied Pharmacology 233: 92-99.
  68. [68]  Weuve, J., Puett, R.C., Schwartz, J., Yanosky, J.D., Laden, F. and Grodstein, F. (2012), Exposure to Particulate Air Pollution and Cognitive Decline in Older Women, Archives of Internal Medicine 172(3): 219-227.
  69. [69]  World Health Organization (WHO) (2004), Health aspects of air pollution: Results from the WHO project "Systematic review of health aspects of air pollution in Europe", World Health Organization Regional Office for Europe: Copenhagen.
  70. [70]  WHO (2006), Air Quality Guidelines—Global Update, World Health Organization: Geneva.
  71. [71]  WHO (2007), Health risks of heavy metals from long-range transboundary air pollution, World Health Organization Regional Office for Europe: Copenhagen.
  72. [72]  WHO (2009), Global health risks: Mortality and burden of diseases attributable to selected major risks, World Health Organization: Geneva.
  73. [73]  Ziemacki, G., Cattani, G., Cusano, M.C., Stacchini, G. and Marconi, A. (2003), Occurrence of metals in various size fractions of particulate matter, Annali dell'Istituto Superiore di Sanità 39: 371-379.