Skip Navigation Links
Journal of Environmental Accounting and Management
António Mendes Lopes (editor), Jiazhong Zhang(editor)
António Mendes Lopes (editor)

University of Porto, Portugal


Jiazhong Zhang (editor)

School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi Province 710049, China

Fax: +86 29 82668723 Email:

A Life Cycle Assessment of Landfilled Municipal Solid Waste in Argentina The Influence of Waste Composition on Greenhouse Gases Emissions and Other Impacts

Journal of Environmental Accounting and Management 2(2) (2014) 145--162 | DOI:10.5890/JEAM.2014.06.005

María Daniela Caprile$^{1}$; Maddalena Ripa$^{2}$

$^{1}$ Ecology Area, National University of General Sarmiento, Buenos Aires, Juan María Gutiérrez 1150, 1613, Argentina

$^{2}$ Department of Science and Technology, Parthenope University of Napoli, Napoli, Centro Direzionale - Isola C4, 80143, Italy

Download Full Text PDF



Landfills are still among the most common patterns of waste disposal in the world, in spite of the spreading awareness of their environmental impacts. Besides being one of the main sources of greenhouse gases emission (GHG) in the waste management sector, they are also responsible for human and ecosystem toxicity, eutrophication, photochemical oxydation, not to talk of landscape visual degradation, competition for land use and bad smell. In this paper, an empirical model is used to estimate CO2and other gaseous and liquid emissions from landfilling of mixed MSW. By means of an LCA framework, the business-as-usual scenario (landfilling) of San Miguel city (Buenos Aires) is analyzed as a benchmark case and compared to alternative waste management scenarios (40% waste reduction and 50% pre-sorting). Impact potentials are estimated with reference to 1 kg of wet mixed MSW disposed off in a sanitary landfill with bottom liner, leachate collection and treatment, and gas collection. A Life Cycle Impact Assessment (LCIA) of the landfill was performed based on emissions released over a 100 years time interval after disposal. A special focus was placed on Global Warming Potential of landfilled waste (GWP, kg CO2eq), in order to shed light on the different impacts resulting from inclusion or subtraction of biogenic CO2, most often assumed as global warming neutral in published studies. Our results show that: (1) waste composition plays a critical role on waste LCIA; (2) the default exclusion of biogenic CO2emissions can lead to an underestimate of the environmental load of the landfill as far as climate change impact is concerned; (3) global warming, eutrophication, human toxicity and photochemical oxidation are the main impacts of landfilling practices; (4) alternative, waste-prevention and pre-sorting scenarios are likely to decrease such impacts by 20-30% compared to business-as-usual, depending on the investigatedimpact category.


The authors gratefully acknowledge the financial support received from the Parthenope University of Naples (EU Project LIFE11 ENV/DE/343, MARSS “Material Advanced Recovery Sustainable Systems”, LIFE+ Environment Policy and Governance), the University of General Sarmiento and the National Agency of Science and Technology of Argentina. The authors are also grateful to Jaquelina Tapia for the map of the Big Buenos Aires Region (RGBA) and Salvatore Mellino for the fruitful debate and advices.


  1. [1]  Barton, J.R., Issaias, I. and Stentiford, E.I. (2008), Carbon - making the right choice for waste management in developing countries, Waste Management, 28(4), 690-698.
  2. [2]  Belevi, H. and Baccini, P. (1989), Long term behaviour of municipal solid waste landfill, Waste Management & Research, 7, 43-56.
  3. [3]  Bjarnadóttir, H.J., Frieriksson, G.B., Johnsen T. and Sletsen, H. (2002), Guidelines for the use of LCA in the waste management sector, NordTest Report TR-517.
  4. [4]  Buenos Aire`s province law 13.592. (2006), Gestión Integral de Residuos Sóldios Urbanos. Senado y Cámara de Diputados de la Provinca de Buenos Aires.
  5. [5]  CEAMSE. (2012), Waste Generation Statistics, Available online: (09.12.2013).
  6. [6]  Cherubini, F., Bargigli, S. and Ulgiati, S. (2009), Life cycle assessment (LCA) of waste management strategies: landfilling, sorting plant and incineration, Energy 34, 2116-2123.
  7. [7]  Cherubini, F., Peters, G. P, Berntsen, T., Str?mman, A. H. and Hertwich, E. (2011), CO2 emissions from biomass combustion for bioenergy: atmospheric decay and contribution to global warming, GCB Bioenergy 3, 413-426.
  8. [8]  Christensen, T.H., Gentil, E.C., Boldrin, A., Larsen, A.W., Weidema, B.P. and Hauschild, M. (2009), C balance, carbon dioxide emissions and global warming potentials in LCA-modelling of waste management systems, Waste Management & Research 27, 707-715.
  9. [9]  City of Buenos Aires law 1.854. (2005), Gestión Integral de Residuos Sólidos Urbanos - Basura Cero. Legislatura de la Ciudad Autónoma de Buenos Aires.
  10. [10]  Guinèe, J.B., Gorrèe, M., Heijungs, R., Huppes, G., Klein, R., de Koning A., van Oers L., Wegener Sleeswijk, A., Suh, S., Udo de Haes, H.A., de Bruijn, H., van Duin, R., Huijbregts, M.A.J., Lindeijer, E., Roorda, A.A.H. and Weidema B.P. (2001a), Life Cycle Assessment; An operational guide to the ISO standards; Part 1 and 2, Ministry of Housing, Spatial Planning and Environment (VROM) and Centre of Environmental Science (CML), Den Haag and Leiden; the Netherlands, retrieved from
  11. [11]  Guinèe, J.B., Gorrèe, M., Heijungs, R., Huppes, G., Klein, R., de Koning A., van Oers L., Wegener Sleeswijk, A., Suh, S., Udo de Haes, H.A., de Bruijn, H., van Duin, R., Huijbregts, M.A.J., Lindeijer, E., Roorda, A.A.H. and Weidema B.P. (2001b), Life Cycle Assessment; An operational guide to the ISO standards; Part 3, Scientific Background, Ministry of Housing, Spatial Planning and Environment (VROM) and Centre of Environmental Science (CML), Den Haag and Leiden; the Netherlands, retrieved from
  12. [12]  Coleman, T., Masoni, P., Dryer, A. and McDougall, F. (2003), International Expert Group on Life Cycle Assessment for Integrated Waste Management, International Journal of Life Cycle Assessment 8, 175-178.
  13. [13]  De Feo, G. and Malvano, C. (2009), The use of LCA in selecting the best MSW management system, Waste Management 29, 1901- 1915.
  14. [14]  Desideri, U., Di Maria, F., Leonardi, D. and Proietti, S. (2003), Sanitary landfill energetic potential analysis: a real case study, Energy Conversion and Management 44, 1969-1981.
  15. [15]  Dobson, P. (1998), Carbon balances in waste management systems, Unpublished discussion paper for the "International Expert Group on LCA and Integrated Solid Waste Management".
  16. [16]  Doka, G., Hellweg, S. and Hungerbühler, K. (2002), Subjective Valuation: the example of Long-Term Emissions in the Life Cycle Assessment of Waste Disposal Systems, Recovery, Recycling, Re-integration R∩02 Congress, Geneva, Switzerland, 12-15, February 2002.
  17. [17]  Doka, G. (2009), Life Cycle Inventories of Waste Treatment Services - Part II, Landfills - Underground deposits - Landfarming. Dübendorf: Ecoinvent report No. 13, Swiss Centre for Life Cycle Inventories.
  18. [18]  Enterprises pour l`environnement (EPE) Working Group (2013), Protocol for the quantification of greenhouse gas emissions from waste management activities, Version 5.0. October 2013.
  19. [19]  Estrategia Nacional para la Gestión Integral de Residuos Sólidos Urbanos (ENGIRSU) (2005), Goldstein, León, ed. Buenos Aires, Argentina. Secretaría de Ambiente y Desarrollo Sustentable de la Nación. Ministerio de Salud y Ambiente de la Nación.
  20. [20]  European Commission (1999), Council Directive 1999/31/EC of 26 April 1999 on the Landfill Waste.
  21. [21]  European Union (2008), Directive 2008/98/EC on waste (Waste Framework Directive).
  22. [22]  Ekvall, T., Assefa, G., Bjorklund, A., Eriksson, O. and Finnveden, G. (2007), What life-cycle assessment does and does not do in assessments of waste management, Waste Management, 27, 989-996.
  23. [23]  Finnveden, G., Andersson-Sköld, Y., Samuelsson, M.O., Zetterberg, L. and Lindfors, L.G. (1992), Product Life Cycle Assessment, In: Classification (Impact Analysis) in Connection with Life Cycle Assessments - A preliminary Study. (Eds.), Nordic Council of Ministers, Copenhagen, pp. 172-231.
  24. [24]  Finnveden, G., Albertsson, A.C., Berendson, J., Eriksson, E., Höglund, L.O., Karlsson, S. and Sundqvist, J.O. (1995), Solid waste treatment within the framework of Life-Cycle Assessment, Journal of Cleaner Production, 3, 189-199.
  25. [25]  Finnveden, G., and Huppes, G. (1995), Proceedings from the International Workshop "Life Cycle Assessment and Treatment of Solid Waste", September 28-29. AFR-Report 98. AFN, Naturv?rdsverket, Stockholm.
  26. [26]  Finnveden, G. (1999), Methodological aspects of life cycle assessment of integrated solid waste management systems, Resources, Conservation and Recycling, 26, 173-187.
  27. [27]  Flugsrud, K., Hoem, B., Kvingedal, E., Rydal, K., 2001. Estimating net emissions of CO2 from harvested wood products. STF report 1831/200, Norwegian Pollution Control Authority, Oslo, 47.
  28. [28]  Forster, P., Ramaswamy, V., Artaxo, P., Berntsen, T., Betts, R., Fahey, D.W., Haywood, J., Lean, J., Lowe, D.C., Myhre, G., Nganga, J., Prinn, R., Raga, G., Schulz, M. and Van Dorland, R. (2007), In: Radiative Forcing of Climate Change. The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. (Eds) S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor, and H. L. Miller, Climate Change. Pp. 129-234. Cambridge Univ. Press, Cambridge, United Kingdom and New York, NY, USA.
  29. [29]  Frischknecht, R., Jungbluth, N., Althaus, H.J., Doka, G., Dones, R., Hischier, R., Hellweg, S., Humbert, S., Margni, M., Nemecek, T. and Spielmann, M. (2007), Implementation of Life Cycle Impact Assessment Methods: Data v2.0. Ecoinvent report No. 3, Swiss centre for Life Cycle Inventories, Dubendorf, Switzerland.
  30. [30]  Gentil, E.C., Aoustin, E. and Christensen, T.H. (200), Greenhouse gas accounting and waste management, Waste Management & Research, 27, 696-706.
  31. [31]  Hellweg, S. (2000), Time and Site - Dependent Life - Cycle Assessment of Thermal Waste Treatment Process, PhD thesis, ETH Zürich, No. 13999, ISBN 3-89825-239-6, Zürich.
  32. [32]  Hellweg, S., Hofstetter T.B. and Hungerbühler K. (2002), Discounting and the environment: should current impacts be weighted differently than impacts harming future generations?, International Journal of Life Cycle Assessment, 8, 8-18.
  33. [33]  Hofstetter, P. (1998), Perspectives in life cycle impact assessment: A structured approach to combine models of the technosphere, ecosphere and valuesphere, Kluwer Academic Publishers, Boston.
  34. [34]  INDEC. (2010). Argentine National Institute of Statistics and Census. National Population, Households and Dwellings 2010. Available online: (10.03.2013).
  35. [35]  INDEC. (2005). Qué es el Gran Buenos Aires?. Available online: (10.12.2013).
  36. [36]  IPCC. (2006), IPCC Guidelines for National Greenhouse Gas Inventories. IPCC/IGES, Hayama, Japan. Available online: (20.11.2013).
  37. [37]  IPCC. (2005), Safeguarding the Ozone Layer and the Global Climate System: issues related to Hydrofluorocarbons and Perfluorocarbons. Special Report of the Intergovernmental Panel on Climate Change (IPCC), Cambridge University Press, Cambridge.
  38. [38]  IPCC. (2001a), Climate Change 2001: Mitigation. Contribution of Working Group III to the third assessment report of the Intergov ernmental Panel on Climate Change (IPCC), Cambridge University Press, Cambridge.
  39. [39]  IPCC. (2001b), Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the third assessment report of the Intergovernmental Panel on Climate Change (IPCC), Cambridge University Press, Cambridge.
  40. [40]  ISO. (2006), ISO 14040 International Standard, In: Environmental Management - Life Cycle Assessment - Principles and Framework. International Organisation for Standardization, Geneva, Switzerland.
  41. [41]  IIS-FIUBA and CEAMSE. (2011), Study of Waste Composition Quality of Big Buenos Aires Region, Instituto de Ingenieria Sanitaria, Facultad de Ingeniería, Universidad de Buenos Aires. Coordinación Ecológica área Metropolitana Sociedad del Estado. Buenos Aires, Argentina. Available online: (09.12.2013).
  42. [42]  Johnson, E. (2009), Goodbye to carbon neutral: Getting biomass footprints right, Environmental Impact Assessment, 29, 165-168.
  43. [43]  Laurent, A., Bakas, I., Clavreul, J., Bernstad, A., Niero, M., Gentil, E., Hauschild, M.Z. and Christensen, T.H. (2014a), Review of LCA studies of solid waste management systems. Part I: lessons learned and perspectives, Waste Management, 34, 573-588.
  44. [44]  Laurent, A.; Clavruel, J., Bernstad, A., Bakas, I., Niero, N., Gentil, E., Christensen, T.H. and Hauschild, M.Z. (2014b), Review of LCA studies of solid waste management systems. Part II: methodological guidance for a better practice, Waste Management, 34, 589-606.
  45. [45]  Manfredi, S., Tonini, D. and Christensen, T.H. (2010), Contribution of individual waste fractions to the environmental impacts from landfilling of municipal solid waste, Waste Management, 30, 433-440.
  46. [46]  Mateucci, S. (2006), La Sustentabilidad del Sistema Humano - Natural en el Norte y Noroeste de la Provincia de Buenos Aires, In: Mateucci y otros, Crecimiento Urbano y sus Consecuencias sobre el entorno rural: el caso de la ecoregión pampeana. (Eds) Orientación Gráfica, Buenos Aires, pp 88.
  47. [47]  McDougall, F., White, P., Franke, M. and Hindle, P. (2001), Integrated Solid Waste Management: A Life Cycle Inventory, 2nd ed. Oxford; Malden, MA: Blackwell Science.
  48. [48]  Micales, J.A. and Skog. K.E. (1997), The decomposition of forest products in landfills. International Biodeterioration & Biodegradation, 39, 145-158.
  49. [49]  Möllersten, K. and Grönkvist, S. (2007), All CO2 is equal in the atmosphere -A comment on CDM GHG accounting standards for methane recovery and oxidation projects. Energy Policy, 35, 3675-3680.
  50. [50]  Mukhopadhyay, B. (2013), Global Warming - A Threat to the Planet, American International Journal of Biology 1, 29-34.
  51. [51]  National law 25.916. (2004), Gestión de residuos domiciliarios, Senado y Cámara de Diputados de la Nación.
  52. [52]  Oonk, H. (2010), Literature review: methane from landfills, methods to quantify generation, oxidation and emission, Innovations in Environmental Technology. %20gas%20modeling%20-%20Literature%20Review%20Methane%20from%20Lanfills.pdf (03-03-2014).
  53. [53]  Pingoud, K., Savolainen, I. and Seppälä, H. (1996), Greenhouse Impact of the Finnish Forest Sector including Forest Products and Waste Management. Ambio, 25, 318-26.
  54. [54]  Pipatti, R. and Savolainen, I. (1996), Role of energy production in the control of greenhouse gas emissions from waste management, Energy Conversion and Management, 37, 1105-1110.
  55. [55]  Pipatti, R. and Wihersaari, M. (1998), Cost-effectiveness of alternative strategies in mitigating the greenhouse impact of waste management in three communities of different size, Mitigation and Adaption Strategies for Global Change, 2, 337-358.
  56. [56]  Sundqvist, J. O., Finnveden, G., Albertsson, A. C., Karlsson, S., Berendson, J. and Höglund, L.O. (1997), Life Cycle Assessment and Solid Waste, AFR Report 173, AFR, Stockholm, Sweden.
  57. [57]  Tapia, J. (2013), A theoretical assessment of energy generation from organic urban waste. The case of San Miguel, Buenos Aires, Argentina, Key speaker in the III International Congress of Environment and Renewable Energies, National University of Villa Maria, 11-15 november 2013, Córdoba, Argentina.
  58. [58]  US EPA. (2002), Solid waste management and Greenhouse gases. A Life-Cycle Assessment of Emissions and Sinks, EPA530-R-02- 006, US Environmental Protection Agency, Washington DC.
  59. [59]  US EPA. (2010), Greenhouse Gas Emissions Estimation Methodologies for Biogenic Emissions from Selected Source Categories: Solid Waste Disposal Wastewater Treatment Ethanol Fermentation, RTI Project Number 0210426.004.018. Available online: (10.09.2013)
  60. [60]  Ustohalova, V., Richen, T. and Widmann R. (2006), Estimation of landfill emission lifespan using process oriented modeling, Waste Management, 26, 442-450.
  61. [61]  Vergara, S.E., Damgaard, A. and Horvath, A. (2011), Boundaries matter: Greenhouse gas emission reductions from alternative waste treatment strategies for California's municipal solid waste, Resources, Conservation and Recycling, 57, 87-97.
  62. [62]  Weidema, B.P. and Wesnæs, M.S. (1996), Data quality management for life cycle inventories — an example of using data quality indicators, Journal of Cleaner Production, 4, 167-174.
  63. [63]  World Bank. (2012), What a waste: A Global Review of Solid Waste Management, Urban Development and Local Government Unit, World Bank, Washington, DC 20433 USA. Available online: (12.09.2013).
  64. [64]  Yang, N., Zhang, H., Shao, L.M., Lü, F. and He. P.J. (2013), Greenhouse gas emissions during MSW Landfilling in China: Influence of waste characteristics and LFG treatment measures. Journal of Environmental Management, 129, 510-521.
  65. [65]  Zimmermann, P., Doka, G., Huber, F., Labhardt, A. and Ménard, M. (1996), Okoinventare von Entsorgungsprozessen. Grundlagen zur Integration der Entsorgung in ?kobilanzen, ESU-Reihe, 1/96, Zürich: Institut für Energietechnik, ETH Zürich.