Skip Navigation Links
Discontinuity, Nonlinearity, and Complexity

Dimitry Volchenkov (editor), Dumitru Baleanu (editor)

Dimitry Volchenkov(editor)

Mathematics & Statistics, Texas Tech University, 1108 Memorial Circle, Lubbock, TX 79409, USA

Email: dr.volchenkov@gmail.com

Dumitru Baleanu (editor)

Cankaya University, Ankara, Turkey; Institute of Space Sciences, Magurele-Bucharest, Romania

Email: dumitru.baleanu@gmail.com


Initial Value Problems for Hybrid Generalized Hilfer Fractional Differential Equations

Discontinuity, Nonlinearity, and Complexity 12(2) (2023) 287--298 | DOI:10.5890/DNC.2023.06.005

$^{1}$ Laboratory of Mathematics, Djillali Liabes University of Sidi Bel-Abb`es, P.O. Box 89, Sidi Bel-Abb`es 22000, Algeria

$^{2}$ Department of Electronics, University of Sa"{i}da--Dr. Moulay Tahar, P.O. Box 138, EN-Nasr, 20000 Sa"{i}da, Algeria

$^{3}$ Faculty of Mathematics and Computational Science, Xiangtan University, Hunan 411105, P.R. China

Download Full Text PDF

 

Abstract

This manuscript is devoted to proving some results concerning the existence of solutions for a class of initial value problems for nonlinear fractional Hybrid differential equations and Generalized Hilfer fractional derivative. The result is based on a fixed point theorem due to Dhage. Further, some examples are provided for the justification of our main results.

References

  1. [1]  Abbas, S., Benchohra, M., Lazreg, J.E., Alsaedi, A., and Zhou, Y. (2017), Existence and Ulam stability for fractional differential equations of Hilfer-Hadamard type, Advances in Difference Equations, 2017(1), 1-14.
  2. [2]  Abbas, S., Benchohra, M., Lazreg, J.E., and N'Gu{e}r{e}kata, G.M. (2017), Hilfer and Hadamard functional random fractional differential inclusions, Cubo, 19, 17-38.
  3. [3]  Abbas, S., Benchohra, M., Lazreg, J.E., and Zhou, Y. (2017), A survey on Hadamard and Hilfer fractional differential equations: analysis and stability, Chaos Solitons Fractals, 102, 47-71.
  4. [4]  Benchohra, M. and Lazreg, J.E. (2017), Existence and Ulam stability for nonlinear implicit fractional differential equations with Hadamard derivative, Studia Universitatis BabeÈ™-Bolyai Mathematica, 62, 27-38.
  5. [5]  Zhou, Y. (2014), Basic Theory of Fractional Differential Equations, World Scientific, Singapore.
  6. [6]  Abbas, S., Benchohra, M., Graef, J.R., and Henderson, J. (2018), Implicit Differential and Integral Equations: Existence and stability, Walter de Gruyter, London.
  7. [7]  Abbas, S., Benchohra, M. and N'Gu{e}r{e}kata, G.M. (2012), Topics in Fractional Differential Equations, Springer-Verlag, New York.
  8. [8]  Abbas, S., Benchohra, M., and N'Gu{e}r{e}kata, G.M. (2014), Advanced Fractional Differential and Integral Equations, Nova Science Publishers, New York.
  9. [9]  Ahmad, B., Alsaedi, A., Ntouyas, S.K., and Tariboon, J. (2017), Hadamard-type Fractional Differential Equations, Inclusions and Inequalities, Springer, Cham.
  10. [10]  Ahmad, B., Alsaedi, A., and Ntouyas, S.K. (2012), Fractional differential inclusions with fractional separated boundary conditions, Fractional Calculus and Applied Analysis, 15, 362-382.
  11. [11]  Baleanu, D., G\"{u}ven\c{c}, Z.B, and Machado, J.A.T. (2010), New Trends in Nanotechnology and Fractional Calculus Applications, Springer, New York.
  12. [12]  Baleanu, D., Jajarmi, A., Bonyah, E., and Hajipour, M. (2018), New aspects of poor nutrition in the life cycle within the fractional calculus. Advances in Difference Equations, (1), 1-14.
  13. [13]  Baleanu, D., Jajarmi, A., and Asad, J.H. (2019), Classical and fractional aspects of two coupled pendulums, Romanian Reports in Physics, 71(103), 1-12.
  14. [14]  Baleanu, D., Sajjadi, S.S., Asad, J.H., Jajarmi, A.. and Estiri, E. (2021), Hyperchaotic behaviors, optimal control, and synchronization of a nonautonomous cardiac conduction system. Advances in Difference Equations, (1), 1-24.
  15. [15]  Baleanu, D., Sajjadi, S.S., Jajarmi, A.M.I.N., Defterli, O.Z.L.E.M., Asad, J.H., and Tulkarm, P. (2021), The fractional dynamics of a linear triatomic molecule, Romanian Reports in Physics Journal, 73(1), 105, 1-13.
  16. [16]  Jajarmi, A. and Baleanu, D. (2021), On the fractional optimal control problems with a general derivative operator, Asian Journal of Control, 23(2), 1062-1071.
  17. [17]  Mustapha, U.T., Qureshi, S., Yusuf, A., and Hincal, E. (2020), Fractional modeling for the spread of Hookworm infection under Caputo operator, Chaos, Solitons, Fractals, 137, 109878, 1-15.
  18. [18]  Qureshi, S., E. Bonyah, E., and Shaikh, A.A. (2019), Classical and contemporary fractional operators for modeling diarrhea transmission dynamics under real statistical data, Physica A: Statistical Mechanics and its Applications, 535, 122496, 1-14.
  19. [19]  Qureshi, S., Yusuf, A., Shaikh, A.A., Inc, M., and Baleanu, D. (2019), Fractional modeling of blood ethanol concentration system with real data application, Chaos: An Interdisciplinary Journal of Nonlinear Science, 29(1), 013143, 1-15.
  20. [20]  Salim, A., Benchohra, M., Karapinar, E., and Lazreg, J.E. (2020), Existence and Ulam stability for impulsive generalised Hilfer-type fractional differential equations, Advances in Difference Equations, (620), 1--21.
  21. [21]  Salim, A., Benchohra, M., Lazreg, J.E., and Henderson, J. (2020), Nonlinear implicit generalised Hilfer-type fractional differential equations with non-instantaneous impulses in Banach spaces, Nonlinear Analysis, Theory, Methods and Applications 4(4), 332-348.
  22. [22]  Salim, A., Benchohra, M., Graef, J.R., and Lazreg, J.E. (2021), Boundary value problem for fractional generalised Hilfer-type fractional derivative with non-instantaneous impulses, Fractal and Fractional, 5(1), 1-21.
  23. [23]  Delouei, A.A., Kayhani, M.H., and Norouzi, M. (2012), Exact analytical solution of unsteady axi-symmetric conductive heat transfer in cylindrical orthotropic composite laminates International Journal of Heat and Mass Transfer, 55(15-16), 4427-4436.
  24. [24]  Delouei, A.A. and Norouzi, M. (2015), Exact Analytical Solution for Unsteady Heat Conduction in Fiber-Reinforced Spherical Composites Under the General Boundary Conditions, Journal Heat Transfer 137(10), 10170.
  25. [25]  Kayhani, M.H., Norouzi, M., and Delouei, A.A. (2012), A general analytical solution for heat conduction in cylindrical multilayer composite laminates, International Journal of Thermal Sciences, 52, 73-82
  26. [26]  Norouzi, M., Delouei, A.A., and Seilsepour, M. (2013), A general exact solution for heat conduction in multilayer spherical composite laminates, Composite Structures, 106, 288-295
  27. [27]  Ahmad, B., Alsaedi, A., and Ntouyas, S.K. (2014), Initial value problems for hybrid Hadamard fractional differential equations, Electronic Journal of Differential Equations, 161, 1-8.
  28. [28]  Baitiche, Z., Guerbati, K., Benchohra, M., and Zhou, Y. (2019), Boundary value problems for hybrid Caputo fractional differential equations, Mathematics, 7, 282, 1-11.
  29. [29]  Derbazi, C., Hammouche, H. and Benchohra, M. (2019), Fractional hybrid differential equations with three-point boundary hybrid conditions, Advances in Difference Equations, 2019, 125, 1-11.
  30. [30]  Zhao, Y., Sun, S., Han, Z., and Li, Q. (2011), Theory of fractional hybrid differential equations, Computational and Applied Mathematics, 62, 1312-1324.
  31. [31]  Hilal, K. and Kajouni, A. (2015), Boundary value problems for hybrid differential equations with fractional order, Advances in Difference Equations, 2015(1), 1-19.
  32. [32]  Dhage, B.C. (2005), On a fixed point theorem in Banach algebras with applications, Applied Mathematics Letters, 18, 273-280.
  33. [33]  Katugampola, U. (2011), A new approach to a generalized fractional integral, Applied Mathematics and Computation, 218, 860-865.
  34. [34]  Oliveira, D.S. and De Oliveira, E.C. (2018), Hilfer–Katugampola fractional derivatives, Computational and Applied Mathematics, 37(3), pp.3672-3690.
  35. [35]  Almeida, R., Malinowska, A.B., and Odzijewicz, T. (2016), Fractional differential equations with dependence on the Caputo--Katugampola derivative, The Journal of Computational and Nonlinear Dynamics, 11(6), 1-11.