Skip Navigation Links
Discontinuity, Nonlinearity, and Complexity

Dimitry Volchenkov (editor), Dumitru Baleanu (editor)

Dimitry Volchenkov(editor)

Mathematics & Statistics, Texas Tech University, 1108 Memorial Circle, Lubbock, TX 79409, USA

Email: dr.volchenkov@gmail.com

Dumitru Baleanu (editor)

Cankaya University, Ankara, Turkey; Institute of Space Sciences, Magurele-Bucharest, Romania

Email: dumitru.baleanu@gmail.com


Analytical Solutions of some Fractional Order Nonlinear Evolution Equations by Sine-Cosine Method

Discontinuity, Nonlinearity, and Complexity 12(2) (2023) 275--286 | DOI:10.5890/DNC.2023.06.004

Department of Physics, Veer Surendra Sai University of Technology, Odisha-768018, India

Download Full Text PDF

 

Abstract

In our recent work, we study three fractional order nonlinear evolution equations by sine-cosine method, a class of traveling wave solutions with significant physical structures are obtained. The solutions include periodic solutions, soliton solutions, bell shaped solutions with the estimated values of involved parameters. The significance of contemplating and applying such equations originates from a dynamical point of view of the complexities of non linear physical models. Some real time problems of nonlinear physical worlds can be realized such as fractional Zoomeran equation helps to understand time evolution of single scalar field and novelty of boomerons and trappons, numerous wave phenomenas in solid state physics, plasma physics and quantum filed theory can be understood by fractional Hirota-Ramani equation and fractional Zarkhov-Kuznetsov-Benjamin-Bona-Mohany equation helps to understand the propagation of long range gravity waves in fluid mechanics and waves in plasma. The importance of trigonometric and hyperbolic solution in fractional calculus discussed. By the implementation of MATLAB graphical plots are shown.

References

  1. [1]  Tarasov, V.E. (2010), Fractional integration and fractals. In: Fractional Dynamics, Nonlinear Physical Science. https://doi.org/10.1007/978-3642-14003-7-1.
  2. [2] Wang, K.L. and Liu, S.Y. (2016), A new solution procedure for nonlinear fractional porous media equation based on a new fractional derivative, Nonlinear Science Letters A, 7(4), 135-140.
  3. [3]  Wang, K.L. and Liu, S.Y. (2016), He's fractional derivative for nonlinear fractional heat transfer equation, Thermal Science, 20(3), 793-796, DOI:10.2298/TSCI1603793W.
  4. [4]  Sayevand, K. and Pichaghchi, K. (2016), Analysis of nonlinear fractional KdV equation based on he's fractional derivative, Nonlinear Science Letters A, 7(3), 77-85.
  5. [5]  He, J.H. (2014), A tutorial review on fractal space time and fractional calculus, International Journal of Theoretical Physics, 53(11), 3698-3718, https://doi.org/10.1007/s10773-014-2123-8.
  6. [6]  Bekir, A.E. and Guner O.A. (2014), Analytical approach for the space-time nonlinear partial differential fractional equation, International Journal of Nonlinear Sciences and Numerical Simulation, 15, 463-470, https://doi.org/10.1515/ ijnsns-2013-0145.
  7. [7]  Matinfar, M., Eslami, M., and Kordy, M. (2015), The functional variable method for solving the fractional korteweg–de vries equations and the coupled korteweg–de vries equations, Pramana, 85(4), 583-592, https://doi.org/10.1007/ s12043-014-0912-5.
  8. [8]  Yaslan, H.C. (2017), New analytic solutions of the conformable space–time fractional kawahara equation, International Journal for Light and Electron Optics, 140, 123-126, https://doi.org/10.1016/j.ijleo.2017.04.015.
  9. [9]  Baleanu, D. Jajarmi, A., Mohammadi, H., and Rezapour, S. (2020), A new study on the mathematical modelling of human liver with Caputo-Fabrizio fractional derivative, Chaos, Solitons and Fractals, 134, 109705, https://doi.org/ 10.1016/j.chaos.2020.109705.
  10. [10]  Qureshi, S. (2020), Periodic dynamics of rubella epidemic under standard and fractional Caputo operator with real data from Pakistan, Mathematics and Computers in Simulation, https://doi.org/10.1016/j.matcom.2020.06.002.
  11. [11]  Qureshi, S., Chang, M., and Shaikh, A.A. (2020), Analysis of series RL and RC circuits with time-invariant source using truncated M, atangana beta and conformable derivatives, Journal of Ocean Engineering and Science, DOI:https://doi.org/10.1016/j.joes.2020.11.006.
  12. [12]  Baleanu, D., Jajarmi, A., Sajjadi, S.S., and Asad, J.H. (2020), The fractional features of a harmonic oscillator with position-dependent mass, Communications in Theoretical Physics, 72, 055002, https://doi.org/10.1088/1572-9494/ab7700.
  13. [13]  Benderskaya, E.N. (2013), Nonlinear Trends in Modern Artificia Intelligence: A New Perspective. In: Kelemen J., Romportl J., Zackova E. (eds) Beyond Artificial Intelligence. Topics in Intelligent Engineering and Informatics, 4.
  14. [14]  Kazanovich, Y.B. (2007), Nonlinear dynamics modeling and information processing in the brain, Optical Memory and Neural Networks, 16, 111-124, https://doi.org/10.3103/S1060992X07030010.
  15. [15]  Raissi, M. (2018), Deep hidden physics models: deep learning of nonlinear partial differential equations, Journal of Machine Learning Research, 19, 1-24.
  16. [16]  Lusch, B. Kutz, J.N., and Brunton, S.L. (2018), Deep learning for universal linear embeddings of nonlinear dynamics, Nature Communications, 9, 4950. DOI:10.1038/s41467-018-07210-0.
  17. [17]  Nhawu, G.. Mafuta, P., and Mushanyu, J. (2016), The Adomian decomposition method for numerical solution of first-order differential equations, Journal of Mathematical and Computational Science, 3 307-314.
  18. [18]  Bildik, N. and Konuralp, A. (2006), The use of variational iteration method, differential transform method and adomian decomposition method for solving different types of nonlinear partial differential equations, International Journal of Nonlinear Sciences and Numerical Science, 7, 65-70, https://doi.org/10.1515/IJNSNS.2006.7.1.65.
  19. [19]  Abazari, R. and Abazari, R. (2011), Hyperbolic, trigonometric, and rational function solutions of Hirota-Ramani equation via $(\fr{G'}{G})$-expansion method, Mathematical Problems in Engineering, 11, 424801, DOI:10.1155/2011/424801.
  20. [20]  Fan, E. (2000), Extended tanh-function method and its applications to nonlinear equations, Physics letters A, 277(4-5), 212-218.
  21. [21]  Hirota, R. (1973), Exact N‐soliton solutions of the wave equation of long waves in shallow-water and in nonlinear lattices, Journal of Mathematical Physics, 14, 805-810, https://doi.org/10.1063/1.1666400.
  22. [22]  Hirota, R. and Satsuma, J. (1981), Soliton solutions of a coupled Korteweg-de Vries equation, Physics Letters A, 85, 404-408, https://doi.org/10.1016/0375-9601(81)90423-0.
  23. [23]  Safari, M., Ganji, D.D., and Moslemi, M. (2009), Application of He's variational iteration method and Adomian's decomposition method to the fractional KdV-Burgers-Kuramoto equation, Computers Mathematics with Applications, 58, 2091-2097, https://doi.org/10.1016/j.camwa.2009.03.043.
  24. [24]  He, J.H. (2004), Variational principles for some nonlinear partial differential equations with variable coefficients, Chaos, Solitons and Fractals, 19, 847-851, https://doi.org/10.1016/S0960-0779(03)00265-0.
  25. [25]  He, J.H. (2000), Variational iteration method for autonomous ordinary differential systems, Applied Mathematics and Computation, 114, 115-123, https://doi.org/10.1016/S0096-3003(99)00104-6.
  26. [26]  Miah, M.M., Ali, H.M.S., Akbar, M.A., and Wazwaz, A.M. (2017), Some applications of the $(G'/G, 1/G)$-expansion method to find new exact solutions of NLEEs, The European Physical Journal Plus, 252, https://doi.org/10.1140 /epjp/i2017-11571-0.
  27. [27]  Zayed, E.M.E. and Abdelaziz, M.A.M. (2012), The Two-Variable $(\fr{G'}{G}, \fr{1}{G})$-expansion method for solving the nonlinear KdV- mKdV equation, Mathematical Problems in Engineering, 14 pages, https://doi:10.1155/2012/725061.
  28. [28]  Aljahdaly, N.H., Seadawy, A.R., and Albarakati, W.A. (2019), Applications of dispersive analytical wave solutions of nonlinear seventh order Lax and Kaup-Kupershmidt dynamical wave equations, Results in Physics, 14, 102372, https://doi.org/10.1016/j.rinp.2019.102372.
  29. [29]  Aibarakati, W.A., Seadaw, A.R., and Aljahdaly, N.H. (2019), Application of mathematical methods for the non-linear seventh order Sawada-Kotera-Ito dynamical wave equation, Thermal Science, 23, S2081-S2093, DOI:10.2298/ TSCI190705373A.
  30. [30]  Aljahdaly, N.H., Seadawy, A.R., and Albarakati, W.A. (2020), Analytical wave solution for the generalized nonlinear seventh-order KdV dynamical equations arising in shallow water waves, Modern Physics Letters B, 34, 2050279, https://doi.org/10.1142/S0217984920502796.
  31. [31]  Kudryashov, N.A. (2018), Exact solutions and integrability of the Duffing-Van der Pol equation, Regular and Chaotic Dynamics, 23, 471-479, https://doi.org/10.1134/S156035471804007X.
  32. [32]  Ashi, H.A. and Aljahdaly, N.H. (2020), Breather and solitons waves in optical fibers via exponential time differencing method, Communications in Nonlinear Science and Numerical Simulation, 85, 105237, https://doi.org/10.1016/ j.cnsns.2020.105237.
  33. [33]  Bian, C., Pang, J., Jin, L., and Ying, X. (2010), Solving two fifth order strong nonlinear evolution equations by using the $(\fr{G'}{G})$-expansion method, Communications in Nonlinear Science and Numerical Simulation, 15, 2337-2343, https://doi.org/10.1016/j.cnsns.2009.10.006.
  34. [34]  Zayed, E.M.E., Zedan, H.A., and Gepreel, K.A. (2004), On the solitary wave solutions for nonlinear Hirota–Satsuma coupled KdV of equations, Chaos, Solitons Fractals, 22, 285, https://doi.org/10.1016/j.chaos.2003.12.045.
  35. [35]  Swain, S.N. and Virdi, J.S. (2020), Traveling wave solutions of some nonlinear physical models by using $(\fr{G'}{G})$-expansion Method, Lecture Notes in Mechanical Engineering, Springer, Singapore, https://doi.org/10.1007/978-981-15-0287-3-15.
  36. [36]  Virdi, J.S. (2016), Some new solutions of nonlinear evolution equations with variable coefficients, AIP Conference Proceedings 1728, 020039, DOI:10.1063/1.4946089.
  37. [37]  Behera, S., Aljahdaly, N.H., and Virdi, J.P.S. (2022), On the modified $(\fr{G'}{G^2})$-expansion method for finding some analytical solutions of the traveling waves, Journal of Ocean Engineering and Science, 7(4), 313-320.
  38. [38]  Fan, E. and Zhang, J. (2002), Applications of the Jacobi elliptic function method to special-type nonlinear equations, Physics Letters A, 305(16), 383-392, https://doi.org/10.1016/S0375-9601(02)01516-5.
  39. [39]  Aljahdaly, N.H. and El-Tantawy, S.A. (2020), Simulation study on nonlinear structures in nonlinear dispersive media, Chaos, 30(5), 053117, https://doi.org/10.1063/1.5132557.
  40. [40]  Kayhani, M.H., Norouzi, M., and Delouei, A.A. (2012), A general analytical solution for heat conduction in cylindrical multilayer composite laminates, International Journal of Thermal Sciences, 52, 73-82, DOI:10.1016/j.ijthermalsci. 2011.09.002.
  41. [41]  Delouei, A.A., Kayhani, M.H., and Norouzi, M. (2012), Exact analytical solution of unsteady axi-symmetric conductive heat transfer in cylindrical orthotropic composite laminates, International Journal of Heat and Mass Transfer, 55, 4427-4436, http://dx.doi.org/10.1016/j.ijheatmasstransfer.2012.04.012
  42. [42]  Delouei, A.A. and Norouzi, M. (2015), Exact analytical solution for unsteady heat conduction in Fiber-Reinforced spherical composites under the general boundary conditions, Journal of Heat Transfer, 137, 101701, https://doi.org/10.1115/1.4030348.
  43. [43]  Yusufoglu, E., Bekir., A., and Alp, M. (2008), Periodic and solitary wave solutions of Kawahara and modified Kawahara equations by using Sine-Cosine method, Chaos, Solitons \& Fractals, 37(4), 1193-7, DOI:10.1016/j.chaos. 2006.10.012.
  44. [44]  Wazaz, A.M. (2004), A Sine-Cosine method for handling nonlinear wave equations, Mathematical and Computer Modelling, 40, 499-508, https://doi.org/10.1016/j.mcm.2003.12.010.
  45. [45]  Yao, S.W., Behera, S., Inc, M., Rezazadeh, H., Virdi, J.P.S., Mahmoud, W., Arqub, O.A., and Osman, M.S. (2022), Analytical solutions of conformable Drienfeld-Sokolova-Wilson equation via sine-cosine method, Results in Physics, 42, 105990, https://doi.org/10.1016/j.rinp.2022.105990.
  46. [46]  Aksoya, E., Cevikela, A.C., and Bekirb, A. (2016), Soliton solutions of (2+1)-dimensional time-fractional Zoomeron equation, Optik, 127, 6933-6942, http://dx.doi.org/10.1016/j.ijleo.2016.04.122.
  47. [47]  Gao, W., Rezazadeh, H., Pinar, Z., Baskonus, H.M., Sarwar, S., and Yel, G. (2020), Novel explicit solutions for the nonlinear Zoomeron equation by using newly extended direct algebraic technique, Optical and Quantum Electronics, 52, 52, https://doi.org/10.1007/s11082-019-2162-8.
  48. [48]  Tala-Tebue, E., Djoufack, Z.I., Djimeli-Tsajio, A., and Kenfack-Jiotsa, A. (2018), Solitons and other solutions of the nonlinear fractional Zoomeron equation, Chinese Journal of Physics, DOI:10.1016/j.cjph.2018.04.017.
  49. [49]  Koonprasert, S. and Punpocha, M. (2016), More exact solutions of Hirota–Ramani partial differential equations by applying F-expansion method and symbolic computation, Global Journal of Pure and Applied Mathematics, 12, 1903-1920.
  50. [50]  Knyazev, M.A. (2018), Two-kink solution for the Hirota–Ramani equation for degenerated parameters, Journal of Physical Studies, 22, 4001, https://doi.org/10.30970/jps.22.4001.
  51. [51]  Akter, J. and Ali, A. (2016), Solitary Wave Solutions to the ZKBBM equation and the KPBBM equation via the modified simple equation method, Journal of Partial Differential Equations, 29 143-160, DOI:10.4208/jpde.v29.n2.5.
  52. [52]  Islam, Md.S., Akbar, M.A., and Khan, K. (2017), The improved F-expansion method and its application to the MEE circular rod equation and the ZKBBM equation, Cogent Mathematics, 4(1), 1378530.
  53. [53]  Hanif, M. and Habib, M.A. (2020), Exact solitary wave solutions for a system of some nonlinear space-time fractional differential equations, Pramana, 7, 94, https://doi.org/10.1007/s12043-019-1864-6.
  54. [54]  Weisstein, E.W. (2002), Concise Encyclopedia of Mathematics, 2nd ed. (CRC Press, New York).