Skip Navigation Links
Discontinuity, Nonlinearity, and Complexity

Dimitry Volchenkov (editor), Dumitru Baleanu (editor)

Dimitry Volchenkov(editor)

Mathematics & Statistics, Texas Tech University, 1108 Memorial Circle, Lubbock, TX 79409, USA


Dumitru Baleanu (editor)

Cankaya University, Ankara, Turkey; Institute of Space Sciences, Magurele-Bucharest, Romania


Degree based Topological indices of Subdivision Graph

Discontinuity, Nonlinearity, and Complexity 11(2) (2022) 337--342 | DOI:10.5890/DNC.2022.06.012

Caiyun Wang$^1$, Shumin Zhang$^1$, He Li$^2$

$^1$ School of Mathematics and Statistics, Qinghai Normal University, Xining 810001, China

$^{2}$ School of Computer, Qinghai Normal University, Xining 810001, China

Download Full Text PDF



Several degree based topologcal indices are usually used to characterize chemical compounds. Such as Randi\'{c} index, the sum-connectivity index, the harmonic index, $ABC$ index, and the geometric-arithmetic index etc. In the paper, we compute the values about the topological indices of subdivision graph.


  1. [1]  Bondy, J.A. and Murty, U.S.R. (2008), ph{Graph Theory}, GTM 244, Springer.
  2. [2]  Randi{c}, M. (1975), On characterization of molecular branching, J. Am. Chem. Soc., 97, 6609-6615.
  3. [3]  Zhou, B. and Trinajsti{c}, N. (2009), On a novel connectivity index, J. Math. Chem., 46, 1252-1270.
  4. [4]  Du, Z., Zhou, B., and Trinajsti{c}, N. (2010), Minimum sum-connectivity indices of trees and unicyclic of a given matching number, J. Math. Chem., 47, 842-855.
  5. [5]  Lu\v{c}i{c}, B., Nikoli{c}, S., Trinajsti{c}, N., Zhou, B., and Ivani\v{s} Turk, S. (2010), Sum-connectivity index, in: I. Gutman, B. Furtula(Eds.), Novel Molecular Structure Descriptors, Theory and Applications I, Univ. Kragujevac, Kragujevac. pp. 101-136.
  6. [6]  Lu\v{c}i{c}, B., Trinajsti{c}, N., and Zhou, B. (2009), Comparison between the sum-connectivity index and product-connectivity index for benzenoid hydrocarbons, Chem. Phys. Lett., 475, 146-148.
  7. [7]  Fajtlowicz, S. (1987), On conjectures of Graffiti-II, Congr. Numer., 60, 187-197.
  8. [8]  Estrada, E., Torres, E., Rodr{i}guez, L., and Gutman, I. (1998), An atom-bond connecitvity index: modelling the enthalpy of formation of alkanes, Indian Journal of Chemistry, 37, 849-855.
  9. [9]  Das, K.C. (2010), Atom-bond connectivity index graphs, Discrete Appl. Math., 158, 1181-1188.
  10. [10]  Das, K.C. and Trinajsti{c}, N. (2010), Comparison between first geometric-arithmetic index and atom-bond connectivity index, Chem. Phys. Lett., 497, 149-151.
  11. [11]  Furtula, B., Graovac, A., and Vuki\v{c}evi{c}, D. (2009), Atom-bond connectivity index of trees, Discrete Appl. Math., 157, 2828-2835.
  12. [12]  Graovac, A. and Ghorbaini, M. (2010), A new version of atom-bond connectivity index, Acta Chim. Slov., 57, 609-612.
  13. [13]  Vuli\v{c}evi{c}, D. and Furtula, B. (2009), Topological index based on the ratios of geometrical and arithmetical means of end-vertex degrees of edges, Journal of mathematical chemistry, 46, 1369-1376.