Skip Navigation Links
Discontinuity, Nonlinearity, and Complexity

Dimitry Volchenkov (editor), Dumitru Baleanu (editor)

Dimitry Volchenkov(editor)

Mathematics & Statistics, Texas Tech University, 1108 Memorial Circle, Lubbock, TX 79409, USA

Email: dr.volchenkov@gmail.com

Dumitru Baleanu (editor)

Cankaya University, Ankara, Turkey; Institute of Space Sciences, Magurele-Bucharest, Romania

Email: dumitru.baleanu@gmail.com


Ant Colony Optimization Algorithm for Lesion Border Detection in Dermoscopic Images

Discontinuity, Nonlinearity, and Complexity 7(4) (2018) 429--436 | DOI:10.5890/DNC.2018.12.007

Asmae Ennaji, Abdellah Aarab

LESSI laboratory, Faculty of Sciences Dhar el Mahraz, Fes, USMBA, Morocco

Download Full Text PDF

 

Abstract

Medical image segmentation plays a crucial role in computer aided diagnosis system that have a significant potential for early detection of skin cancer. The aim of segmentation process in this field is to facilitate the characterization and the visualization of the lesion in dermoscopic images. This paper proposes a new method for improving the lesion border detection in dermoscopic images, based on the ant colony optimization algorithm. Our experiments show that the proposed method achieved a significant improvement in image segmentation when compared to the deterministic canny procedure.

References

  1. [1]  Luccheseyz, L. (2001), Color image segmentation: a state-of-the-art survey, Dept. of Electrical and Computer Eng., University of California, Santa Barbara; and S.K. Mitray, Dept. of Electronics and Informatics, University of Padua, Italy.
  2. [2]  Ganster, H., Pinz, P., Rohrer, R., Wildling, E., Binder, M., and Kittler, H.(2001), Automated melanoma recognition, IEEE Trans. Med. Imag., 20, 233-239.
  3. [3]  Rubegni, P., Ferrari, A., Cevenini, G., Piccolo, D., Burroni, M., Perotti, R., Peris, K., Taddeucci, P., Biagioli, M., Dell'Eva, G., Chimenti, S., and Andreassi, L. (2001), Differentiation between pigmented spitz naevus and melanoma by digital dermoscopy and stepwise logistic discriminant analysis, Melanoma Res., 11(1), 37-44.
  4. [4]  Erkol, B., Moss, R.H., Stanley, R.J., Stoecker, W.V., and Hva-tum, E. (2005), Automatic lesion boundary detection in dermoscopy images using gradient vector flow snakes, Skin Res. & Technol., 11, 17-26.
  5. [5]  Chung, D.H. and Sapiro, G. (2000), Segmenting skin lesions with partial-differential-equations-based image processing algorithms, IEEE Trans. Med. Imag., 19, 763-767.
  6. [6]  Celebi, M., Aslandogan, Y., and Bergstresser, P. (2005), Unsupervised border detection of skin lesion images, in Int. Conf. Information Technology: Coding and Computing (ITCC 2005), 2, 123-128.
  7. [7]  Schmid, P. (1999), Segmentation of digitized dermatoscopic images by twodimensional color clustering, IEEE Trans. Med. Imag., 18, 164-171.
  8. [8]  Schmid, P. (1999), Lesion detection in dermatoscopic images using anisotropic diffusion and morphological flooding, in Proc. Int. Conf. Image Processing, 3, 449-453.
  9. [9]  http://www.dermnetnz.org.
  10. [10]  Dorigo,M. and Stützle, T. (2004), Ant Colony Optimization, Cambridge: MIT Press.
  11. [11]  Dorigo, M., Maniezzo, V., and Colorni, A. (1996), Ant system: Optimization by a colony of cooperating agents, IEEE Trans. on Systems, Man and Cybernetics, Part B, 26, 29-41.
  12. [12]  Dorigo,M., Birattari,M., and Stutzle, T. (2006), Ant colony optimization, IEEE Computational IntelligenceMagazine, 1, 28-39.
  13. [13]  Stutzle, T. and Holger, H.H. (2000),Max-Min ant system, Future Generation Computer Systems, 16, 889-914.
  14. [14]  Dorigo, M. and Gambardella, L.M. (1997), Ant colony system: A cooperative learning approach to the traveling salesman problem, IEEE Trans. On Evolutionary Computation, 1, 53-66.
  15. [15]  Otsu, N. (1979), A Threshold Selection Method from Gray-level Histograms, IEEE Transactions on Systems, Man and Cybernetics, 9(1), 62-66.
  16. [16]  http://www.dermoscopyatlas.com