Skip Navigation Links
Discontinuity, Nonlinearity, and Complexity

Dimitry Volchenkov (editor), Dumitru Baleanu (editor)

Dimitry Volchenkov(editor)

Mathematics & Statistics, Texas Tech University, 1108 Memorial Circle, Lubbock, TX 79409, USA


Dumitru Baleanu (editor)

Cankaya University, Ankara, Turkey; Institute of Space Sciences, Magurele-Bucharest, Romania


A Dynamic Systems Approach to the Representation of Policy Implementation Processes in a Multi-Actor World

Discontinuity, Nonlinearity, and Complexity 6(3) (2017) 219--245 | DOI:10.5890/DNC.2017.09.001

Dmitry V. Kovalevsky$^{1}$,$^{2}$,$^{3}$, Richard Hewitt$^{4}$,$^{5}$, Cheryl de Boer$^{6}$, Klaus Hasselmann$^{7}$,$^{8}$

$^{1}$ Climate Service Center Germany (GERICS), Helmholtz-Zentrum Geesthacht, Fischertwiete 1, 20095 Hamburg, Germany

$^{2}$ Nansen International Environmental and Remote Sensing Centre, 14th Line 7, office 49, Vasilievsky Island, 199034 St. Petersburg, Russia

$^{3}$ Saint Petersburg State University, Universitetskaya emb. 7-9, 199034 St. Petersburg, Russia

$^{4}$ Observatorio para una Cultura del Territorio, C/ Duque de Fern´an N´u˜nez 2, 1, Madrid, 28012, Spain

$^{5}$ James Hutton Institute, Craigiebuckler, Aberdeen AB15 8QH, Scotland, UK

$^{6}$ University of Twente, Faculty of Geo-Information Science and Earth Observation (ITC), P.O Box 6, 7500 AA Enschede, Netherlands

$^{7}$ Max Planck Institute for Meteorology, Bundesstraße 53, 20146 Hamburg, Germany

$^{8}$ Global Climate Forum, Neue Promenade 6, 10178 Berlin, Germany

Download Full Text PDF



Implementation of any policy involves negotiation between multiple actors, and is therefore susceptible to a dynamic systems modelling approach. In this paper, we make an attempt to develop a family of dynamic systems models of policy implementation in such a multi-actor world by translating an existing, semi-quantitative, application of two theoretical approaches, Contextual Interaction Theory (CIT) and Participatory Action Research (PAR), into a quantitative dynamic framework. We explore various alternative actor-based dynamic systems for this proposed Participatory Contextual Interaction Theory (PCIT), including linear, piecewise linear, and strongly nonlinear models. Analytical results are supplemented with results of numerical simulations. One of the goals of the modelling exercise is to advance the actor dynamics module in the APoLUS land use cellular automata model; illustrative examples of the incorporation of actor dynamics models developed in the present paper into the computation of APoLUS transition potentials are provided.


The research leading to the reported results has received funding from the European Community’s Seventh Framework Programme under Grant Agreement No. 308601 (COMPLEX).


  1. [1]  Alonso, P.M., Hewitt, R., Pacheco, J.D., Bermejo, L.R., Jiménez, V.H., Guilén, J.V., Bressers, H., and de Boer, C. (2016), Losing the roadmap: Renewable energy paralysis in Spain and its implications for the EU low carbon economy, Renewable Energy, 89, 680-694.
  2. [2]  Barrett, S.R.H., Speth, R.L., Eastham, S.D., Dedoussi, I.C., Ashok, A., Malina, R., and Keith, D.W. (2015), Impact of the Volkswagen emissions control defeat device on US public health, Environmental Research Letters, 10, 114005.
  3. [3]  Brand, C. (2016), Beyond 'Dieselgate': Implications of unaccounted and future air pollutant emissions and energy use for cars in the United Kingdom, Energy Policy, 97, 1-12.
  4. [4]  Bardach, E. (2011), Policy Dynamics. In: The Oxford Handbook of Political Science. R.E. Goodin (Ed.). DOI: 10.1093/oxfordhb/9780199604456.013.0045. URL: oxfordhb/9780199604456.001.0001/oxfordhb-9780199604456-e-045#oxfordhb-9780199604456-bibItem-3964
  5. [5]  Mintz, A., Geva, N., and Derouen, K. (1994),Mathematical models of foreign policy decision-making: Compensatory vs. noncompensatory, Synthese, 100, 441-460.
  6. [6]  Weidlich,W. (2006), Sociodynamics.A Systematic Approach toMathematical Modelling in the Social Sciences, Reprint by Dover Publications (2006), ISBN 0-486-45027-9.
  7. [7]  Volchenkov, D. (2016), Survival Under Uncertainty. An Introduction to Probability Models of Social Evolution, Springer. ISBN 978-3-319-39419-0.
  8. [8]  Hansson, S.O. (2005), Decision Theory. A Brief Introduction, Royal Institute of Technology (KTH), Department of Philosophy and the History of Technology. Stockholm. URL:‵soh/decisiontheory.pdf
  9. [9]  Steele, K. and Stef∩ansson, H.O. (2016), Decision Theory. In: The Stanford Encyclopedia of Philosophy (Winter 2016 Edition), E.N. Zalta (Ed.), URL =
  10. [10]  Von Neumann, J. and Morgenstern, O. (1944), Theory of Games and Economic Behavior, Princeton University Press: Princeton.
  11. [11]  Myerson, R.B. (1991), Game Theory: Analysis of Conflict, Harvard University Press: Cambridge, Massachusetts.
  12. [12]  Strogatz, S.H. (1994), Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering. Perseus Books: Reading, Massachusetts.
  13. [13]  Forrester, J.W. (1971), World Dynamics, Wright-Allen Press, Inc.: Cambridge,Massachusetts.
  14. [14]  Sterman, J. (2000), Business Dynamics: Systems Thinking and Modeling for a Complex World. Irwin/McGraw-Hill: Boston.
  15. [15]  Lorenz, H.W. (1993), Nonlinear Dynamical Economics and Chaotic Motion, Springer-Verlag: Berlin.
  16. [16]  Richardson, L.F. (1960), Arms and Insecurity. Boxwood Press: Pittsburgh.
  17. [17]  Richardson, L.F. (1960), Statistics of Deadly Quarrels, Boxwood Press: Pittsburgh.
  18. [18]  Saperstein, A.M. (1994),Mathematical modeling of the effects of &capability' and &intent' on the stability of a compet itive international system, Synthese, 100, 359-378.
  19. [19]  Zagonel, A.A., Rohrbaugh, J., Richardson, G.P. and Andersen, D.F. (2004), Using simulation models to address ※what if§ questions about welfare reform. Journal of Policy Analysis and Management, 23(4), 890-901.
  20. [20]  Saleh, M., Oliva, R., Kampmann, C.E., and Davidsen, P.I. (2010), A comprehensive analytical approach for policy analysis of system dynamics models, European Journal of Operational Research, 203, 673-683.
  21. [21]  Ghaffarzadegan, N., Lyneis, J., and Richardson, G.P. (2011), How small system dynamics models can help the public policy process, System Dynamics Review, 27, 22-44.
  22. [22]  Pruyt, E. (2013), Small System Dynamics Models for Big Issues: Triple Jump towards Real-World Complexity, TU Delft Library: Delft. 324 pp. URL:
  23. [23]  Meadows, D., Meadows, D., Randers, J., and Behrens, W. III (1972), The Limits to Growth: A Report for the Club of Rome's Project on the Predicament of Mankind, Universe Books: New York.
  24. [24]  Meadows, D., Meadows, D., and Randers, J. (1992), Beyond the Limits: Confronting Global Collapse, Envisioning a Sustainable Future, Chelsea Green Publishing Co: White River Junction, VT.
  25. [25]  Meadows, D., Randers, J., and Meadows, D. (2004), Limits to Growth. The 30-Year Update, Chelsea Green Publishing Co: White River Junction, VT.
  26. [26]  Akaev, A.A. (2012), Stabilization of the planetary climate in the twenty first century by transition to a new paradigm of energy consumption, Doklady Earth Sciences, 446, 1180-1184.
  27. [27]  Barker, T. and Scrieciu, S.S. (2010), Modeling low climate stabilization with E3MG: Towards a &New Economics' approach to simulating energy-environment-economy system dynamics, The Energy Journal, 31, 137-164.
  28. [28]  Barth, V. (2003), Integrated Assessment of Climate Change using Structural Dynamic Models, Ph.D. Thesis, Max- Planck-Institut für Meteorologie, Hamburg, 2003.URL:
  29. [29]  Bartter, K., Bassi, A., Cimren, E., Crist, K., Fiksel, J., Ghosh, S., Gumto, K., Heidelberg, R.L., Huang, C.C., Keeler, A., Kim, M.,Miller, S., Porter, S., Simon, D.,Welch, E.E., Yudken, J., and Zimmer, M.J. (2011), Assuring Ohio's Competitiveness in a Carbon-Constrained World: A Collaboration between Ohio University and The Ohio State University. URL:
  30. [30]  De Vries, B. (1998), SUSCLIME: A simulation/game on population and development in a climate-constrained world, Simulation and Gaming, 29(2), 216-237.
  31. [31]  De Vries, B.J.M. (2013), Sustainability Science, Cambridge University Press: Cambridge.
  32. [32]  Fiddaman, T.S. (2002), Exploring policy options with a behavioral climate-economymodel, System Dynamics Review, 18, 243-267.
  33. [33]  Fiddaman, T. (2007), Dynamics of climate policy, System Dynamics Review, 23, 21-34.
  34. [34]  Fiorello, D., Fermi, F., and Bielanska, D. (2010), The ASTRA model for strategic assessment of transport policies, System Dynamics Review, 26, 283-290.
  35. [35]  Ford, A. (2008), Simulation scenarios for rapid reduction in carbon dioxide emissions in the western electricity system, Energy Policy, 36, 443-455.
  36. [36]  Giupponi, C., Borsuk, M.D., de Vries, B.J.M., and Hasselmann, K. (2013), Innovative approaches to integrated global change modelling, Environmental Modelling & Software, 44, 1-9.
  37. [37]  Hallegatte, S. and Ghil, M. (2008), Natural disasters impacting a macroeconomic model with endogenous dynamics, Ecological Economics, 68, 582-592.
  38. [38]  Hallegatte, S., Ghil, M., Dumas, P., and Hourcade, J.C. (2008), Business cycles, bifurcations and chaos in a neoclassical model with investment dynamics, Journal of Economic Behavior & Organization, 67, 57-77.
  39. [39]  Hallegatte, S., Hourcade, J.C., and Dumas, P. (2007), Why economic dynamics matter in assessing climate change damages: Illustration on extreme events, Ecological Economics, 62, 330-340.
  40. [40]  Hasselmann, K. (2010), The climate change game, Nature Geoscience, 3, 511-512.
  41. [41]  Hasselmann, K. (2013), Detecting and responding to climate change. Tellus B, 65, 20088.
  42. [42]  Hasselmann, K., Cremades, R., Filatova, T., Hewitt, R., Jaeger, C., Kovalevsky, D., Voinov, A., andWinder, N. (2015), Free-riders to forerunners. Nature Geoscience, 8, 895-898.
  43. [43]  Hasselmann, K. and Kovalevsky, D.V. (2013), Simulating animal spirits in actor-based environmental models. Environmental Modelling & Software, 44, 10-24.
  44. [44]  Hasselmann, K. and Voinov, A. (2011), The actor driven dynamics of decarbonization. In: Reframing the Problem of Climate Change. From Zero Sum Game to Win-Win Solutions. K. Hasselmann, C. Jaeger, G. Leipold, D. Mangalagiu and J.D. T`abara (Eds.). Routledge, Earthscan, 131-159.
  45. [45]  Hu, B., Leopold, A., and Pickl, S. (2013), Transition towards renewable energy supply - A system dynamics approach. In: Green Growth and Sustainable Development. DynamicModeling and Econometrics in Economics and Finance, 14, J.C. Cuaresma, T. Palokangas and A. Tarasyev (Eds.). Springer-Verlag: Berlin, Heidelberg, 217-226.
  46. [46]  Kellie-Smith, O. and Cox, P.M. (2011), Emergent dynamics of the climate-economy system in the Anthropocene, Philosophical Transactions of the Royal Society A, 369, 868-886.
  47. [47]  Kiani, B., Mirzamohammadi, S., and Hosseini, S.H. (2010), A survey on the role of system dynamics methodology on fossil fuel resources analysis, International Business Research, 3, 84-93.
  48. [48]  Kovalevsky,D.V. and Hasselmann, K. (2014),A hierarchy of out-of-equilibrium actor-based system-dynamic nonlinear economic models. Discontinuity, Nonlinearity, and Complexity, 3, 303-318.
  49. [49]  Kovalevsky,D.V., Kuzmina, S.I., and Bobylev, L.P. (2015), Impact of nonlinearity of climate damage functions on longterm macroeconomic projections under conditions of global warming, Discontinuity, Nonlinearity, and Complexity, 4, 25-33.
  50. [50]  Menshutkin, V.V., Rukhovets, L.A., and Filatov, N.N. (2014), Ecosystem modeling of freshwater lakes (review): 2. Models of freshwater lake's ecosystem, Water Resources, 41, 32-45.
  51. [51]  Motesharrei, S., Rivas, J., and Kalnay, E. (2014), Human and nature dynamics (HANDY): Modeling inequality and use of resources in the collapse or sustainability of societies, Ecological Economics, 101, 90-102.
  52. [52]  Naill, R.F. (1992), A system dynamics model for national energy policy planning, System Dynamics Review, 8, 1-19.
  53. [53]  Naill, R.F., Belanger, S., Klinger, A., and Petersen, E. (1992), An analysis of the cost effectiveness of U.S. energy policies to mitigate global warming, System Dynamics Review, 8, 111-128.
  54. [54]  Ogutu, K.B.Z., D'Andrea, F., Ghil, M., Nyandwi, C., Manene, M.M. and Muthama, J.N. (2015), Coupled Climate- Economy-Biosphere (CoCEB) model. - Part 1: Abatement share and investment in low-carbon technologies, Earth Syst. Dynam. Discuss., 6, 819-863. URL:
  55. [55]  Ogutu, K.B.Z., D'Andrea, F., Ghil, M., Nyandwi, C., Manene, M.M., and Muthama, J.N. (2015), Coupled Climate- Economy-Biosphere (CoCEB) model. - Part 2: Deforestation control and investment in carbon capture and storage technologies. Earth Syst. Dynam. Discuss., 6, 865-906. URL:
  56. [56]  Sterman, J.D. (2008), Risk communication on climate: Mental models and mass balance, Science, 322, 532-533.
  57. [57]  Sterman, J.D., Fiddaman, T., Franck, T., Jones, A., McCauley, S., Rice, P., Sawin, E., and Siegel, L. (2013), Management flight simulators to support climate negotiations, Environmental Modelling & Software, 44, 122-135.
  58. [58]  UNEP (2014), Using Models for Green Economy Policymaking, URL: models ge for web.pdf
  59. [59]  Walsh, B.J., Rydzak, F., Palazzo, A., Kraxner, F., Herrero, M., Schenk, P.M., Ciais, P., Janssens, I.A., Peñuelas, J., Niederl-Schmidinger, A., and Obersteiner, M. (2015), New feed sources key to ambitious climate targets, Carbon Balance and Management, 10(1), 1-8.
  60. [60]  Weber, M., Barth, V., and Hasselmann, K. (2005), A multi-actor dynamic integrated assessment model (MADIAM) of induced technological change and sustainable economic growth, Ecological Economics, 54, 306-327.
  61. [61]  Bressers, H. (2009), From public administration to policy networks: contextual interaction analysis. In: Rediscovering Public Law and Public Administration in Comparative Policy Analysis: A Tribute to Peter Knoepfel. S. Nahrath and F. Varone (Eds.). Presses Polytechniques et Universitaires Romandes: Lausanne, 2009, 123-142.
  62. [62]  De Boer, C.L. (2012), Contextual Water Management: A Study of Governance and Implementation Processes in Local Stream Restoration Projects, Ph.D. Thesis, University of Twente. URL: C de Boer.pdf
  63. [63]  De Boer, C. and Bressers, H. (2011), Complex and Dynamic Implementation Processes. Analyzing the Renaturalization of the Dutch Regge River, University of Twente, in collaboration with the DutchWater Governance Centre: Enschede.
  64. [64]  Hernández Jiménez, V., Encinas Escribano, M.A., Hewitt, R., Ocón Martín, B., Román Bermejo, L.P., and Zazo Moratalla, A. (2016), Qué territorio queremos? Estrategias participativas para un futuro común. [What kind of territory do we want? Participatory strategies for a common future.] Observatorio para una Cultura del Territorio: Madrid, Spain.
  65. [65]  McIntyre, A. (2008), Participatory Action Research. Qualitative Research Methods, no. 52, SAGE Publications, Inc.
  66. [66]  Villasante, T. (2001), Procesos para la creatividad social [Processes for social creativity]. In: T.R. Villasante, M. Montañés and P.Martín (Coords). Prácticas locales de creatividad social. Construyendo ciudadanía/2. [Local practices for social creativity. Constructing Citizenship/2.] El viejo Topo-Red Cimas: Barcelona.
  67. [67]  De Boer, C., Hewitt, R., Hernández Jiménez, V., Román L., Alonso, P.M., Bressers, H., and Warbroek, B. (2014), Stakeholder input and feedback on model development of PLUS4-CMP. EU FP7 COMPLEX Project Report, Deliverable D3.4. URL: files/COMPLEX D3.4 14122014.pdf
  68. [68]  Hewitt, R., de Boer, C. and Hernández Jiménez, V. (2016), Chapter 1: Participatory modelling in Spain and the Netherlands. In: Winder, N., Liljenström, H. and Seaton, R. EU FP7 COMPLEX Final Scientific Report, Vol. 1 The Quest for a Model-Stakeholder Fusion. Sigtuna Foundation.
  69. [69]  Hewitt, R., de Boer, C., Pacheco, J.D., Hernández Jiménez, V., Alonso, P.M., Román L., and van der Meulen, M. (2015), APoLUS model full system documentation. EU FP7 COMPLEX Project Report, Deliverable D3.5. URL: files/WP3 deliverable 3.5 09112015 errors corrected.pdf
  70. [70]  White, R. and Engelen, G. (1993), Cellular automata and fractal urban form: a cellular modelling approach to the evolution of urban land-use patterns. Environment and Planning A, 25(8), 1175-1199.
  71. [71]  White, R., Engelen, G., Uljee, I., Lavalle, C., and Ehrlich, D. (2000), Developing an urban land use simulator for European cities. In: Proceedings of the Fifth EC GIS Workshop: GIS of Tomorrow. Stresa, Italy, 28-30 June 1999. K. Fullerton (Ed.). European Commission. Joint Research Centre. Space Applications Institute, 179-190.
  72. [72]  Hewitt, R., van Delden, H., and Escobar, F. (2014), Participatory land use modelling, pathways to an integrated ap proach. Environmental Modelling & Software, 52, 149-165.
  73. [73]  Kamke, E. (1959), Differentialgleichungen: Lösungsmethoden und Lösungen. I. Gewöhnliche Differentialgleichungen. [Differential Equations: Solution Methods and Solutions. I. Ordinary differential equations.] 6. verbesserte Auflage, Leipzig.
  74. [74]  Kovalevsky, D.V. (2016), Introducing increasing returns to scale and endogenous technological progress in the Structural Dynamic Economic Model SDEM-2. Discontinuity, Nonlinearity, and Complexity, 5, 1-8.
  75. [75]  Faddeev, D.K. and Sominsky, I.S. (1965), Problems in Higher Algebra (Translated by J.L. Brenner), 1965. [Original Russian edition: Faddeev, D.K. and Sominsky, I.S. (1977): Sbornik zadach po vysshej algebre, Moscow, 1977.]