Skip Navigation Links
Discontinuity, Nonlinearity, and Complexity

Dimitry Volchenkov (editor), Dumitru Baleanu (editor)

Dimitry Volchenkov(editor)

Mathematics & Statistics, Texas Tech University, 1108 Memorial Circle, Lubbock, TX 79409, USA

Email: dr.volchenkov@gmail.com

Dumitru Baleanu (editor)

Cankaya University, Ankara, Turkey; Institute of Space Sciences, Magurele-Bucharest, Romania

Email: dumitru.baleanu@gmail.com


Slowing Down of So-called Chaotic States: “Freezing” the Initial State

Discontinuity, Nonlinearity, and Complexity 5(4) (2016) 447--455 | DOI:10.5890/DNC.2016.12.009

M. Belger$^{1}$, S. De Nigris$^{2}$, X. Leoncini$^{1}$,$^{3}$

$^{1}$ Aix Marseille Univ, Univ Toulon, CNRS, CPT, Marseille, France

$^{2}$ Department of Mathematics and Namur Center for Complex Systems-naXys, University of Namur, 8 rempart de la Vierge, 5000 Namur, Belgium

$^{3}$ Center for Nonlinear Theory and Applications, Shenyang Aerospace University, Shenyang 110136, China

Download Full Text PDF

 

Abstract

The so-called chaotic states that emerge on the model of XY interacting on regular critical range networks are analyzed. Typical time scales are extracted from the time series analysis of the global magnetization. The large spectrum confirms the chaotic nature of the observable, anyhow different peaks in the spectrum allows for typical characteristic time-scales to emerge. We find that these time scales τ (N) display a critical slowing down, i.e they diverge as N →ꝏ. The scaling law is analyzed for different energy densities and the behavior τ (N) ∼ √ N is exhibited. This behavior is furthermore explained analytically using the formalism of thermodynamicequations of the motion and analyzing the eigenvalues of the adjacency matrix.

Acknowledgments

S.D.N and X.L. would like to thank S. Ogawa for fruitful discussions and remarks during the preparation of this manuscript.

References

  1. [1]  Fermi, E., Pasta, J., and Ulam, S. (1955), Los Alamos Reports, (LA-1940).
  2. [2]  Dauxois, T., Ruffo, S., Arimondo, E., and Wilkens, M., editors. (2002), Dynamics and Thermodynamics of Systems with Long Range Interactions, volume 602 of Lect. Not. Phys., Springer-Verlag, Berlin.
  3. [3]  Campa, A., Dauxois, T., and Ruffo, S. (2009), Statistical mechanics and dynamics of solvable models with long-range interactions, Phys. Rep., 480, 57-159.
  4. [4]  Campa, A.,Dauxois, T.,Fanelli, D., and Ruffo, S. (2014), Physics of Long-Range Interacting Systems, Oxford University Press.
  5. [5]  Levin, Y., Pakter, R., Rizzato, F.B., Teles, T.N., and C. Benetti, F.P. (2014), Nonequilibrium statistical mechanics of systems with long-range interactions, Phys. Rep., 535, 1-60.
  6. [6]  Holloway, J.P. and Dorning, J.J. (1991), Phys. Rev. A, 44, 3856.
  7. [7]  Van den Berg, T.L., Fanelli, D., and Leoncini, X. (2010), Stationary states and fractional dynamics in systems with long range interactions. EPL, 89, 50010.
  8. [8]  Yamaguchi, Y.Y. (2011), Phys. Rev. E, 84, 016211.
  9. [9]  Ogawa, S., Barre, J.,Morita, H., and Yamaguchi, Y.Y. (2014), Phys Rev. E, 89, 063007.
  10. [10]  Turchi, A., Fanelli, D., and Leoncini, X. (2011), Existence of Quasi-stationary states at the Long Range threshold, Commun. Nonlinear. Sci. Numer. Simulat., 16(12), 4718-4724.
  11. [11]  Antunes, F.L., Benetti, F.P.C., Pakter, R., and Levin, Y. (2015), Chaos and relaxation to equilibrium in systems with long-range interactions. Phys. Rev. E, 92, 052123.
  12. [12]  De Nigris, S. and Leoncini, X. (2013), Emergence of a non trivial fluctuating phase in the XY model on regular networks. EPL, 101, 10002.
  13. [13]  De Nigris, S. and Leoncini, X. (2015), Crafting networks to achieve, or not achieve, chaotic states. Phys. Rev. E, 91, 042809.
  14. [14]  Anteneodo, C. and Tsallis, C. (1998), Breakdown of exponential sensitivity to initial conditions: Role of the range of interactions. Phys. Rev. Lett., 80, 5313-5316.
  15. [15]  Campa, A., Giansanti, A., Moroni, D., and Tsallis, C. (2001), Long-range interacting classical systems: universality in mixing weakening. Phys. Lett. A, 286, 251.
  16. [16]  De Nigris, S. and Leoncini, X. (2013), Critical behaviour of the XY -rotors model on regular and small world networks , Phys. Rev. E, 88(1-2), 012131.
  17. [17]  McLachlan, R.I. and Atela, P. (1992), The accuracy of symplectic integrators, Nonlinearity, 5, 541-562.
  18. [18]  Leoncini, X. and Verga, A. (2001), Dynamical approach to the microcanonical ensemble, Phys. Rev. E, 64(6), 066101.
  19. [19]  Jeans, J.H. (1916), The Dynamical Theory of Gases, Cambridge Univ. Press, Cambridge.