Skip Navigation Links
Discontinuity, Nonlinearity, and Complexity

Dimitry Volchenkov (editor), Dumitru Baleanu (editor)

Dimitry Volchenkov(editor)

Mathematics & Statistics, Texas Tech University, 1108 Memorial Circle, Lubbock, TX 79409, USA

Email: dr.volchenkov@gmail.com

Dumitru Baleanu (editor)

Cankaya University, Ankara, Turkey; Institute of Space Sciences, Magurele-Bucharest, Romania

Email: dumitru.baleanu@gmail.com


How to Resist Synchronization Attacks

Discontinuity, Nonlinearity, and Complexity 4(1) (2016) 1--9 | DOI:10.5890/DNC.2016.03.001

A.N. Pisarchik$^{1}$,$^{2}$; M. Jiménez-Rodríguez$^{3}$; R. Jaimes-Reátegui$^{4}$

$^{1}$ Centro de Investigaciones en Optica, Loma del Bosque 115, Lomas del Campestre, Leon, Guanajuato, Mexico

$^{2}$ Center for Biomedical Technology, Technical University of Madrid, Campus Montegancedo, 28223 Pozuelo de Alarcon, Madrid, Spain

$^{3}$ Centro Universitario de la Ciénega, Universidad de Guadalajara, Av. Universidad 1115, Lindavista, Ocotlán, Jalisco, Mexico

$^{4}$ Centro Universitario de Los Lagos, Universidad de Guadalajara, Enrique Díaz de León 1144, Paseo de la Montaña, Lagos de Moreno, Jalisco, Mexico

Download Full Text PDF

 

Abstract

Conventional synchronization-based chaotic communication is vulnerable to synchronization attacks enable to recuperate system parameters. However, it is possible to make these attacks inefficient. The simple way to resist synchronization attacks is to change a parameter of the master system faster than the time needed for the system to synchronize. To verify this idea we construct a hybrid communication system composed of two chaotic R¨ossler oscillators and the chaotic logistic map. The latter is used for fast variation of the most sensitive system parameter when the R¨ossler oscillators synchronize. The algorithm is robust to noise in the communication channel.

Acknowledgments

This work has been supported by the teaching improvement program PROMEP/103.5/10/5818 and the reincorporation program for ex-fellowship students PROMEP/103.5/12/8149. A.N.P. acknowledges support from CONACYT.

References

  1. [1]  Hayes, S., Grebogi, C., and Ott, E. (1993), Communicating with chaos, Physical Review Letters, 70, 3031-3034.
  2. [2]  Macau, E.E.N. and Marinho, C.M.P.(2003), Communicationwith chaos over band-limited channels, Acta Astronautica, 53, 465-475.
  3. [3]  Baptista, M.S., Macau, E.E.N., and Grebogi, C. (2004), Integrated chaos-based communication, Acta Astronautica, 54, 153-157.
  4. [4]  Marinho, C.M.P., Macau, E.E.N., and Yoneyama, T. (2005), Chaos over chaos: A new approach for satellite communication, Acta Astronautica, 57, 230-238.
  5. [5]  Pecora, L.M. and Carroll, T.L. (1990), Synchronization in chaotic systems, Physical Review Letters, 64, 821-824.
  6. [6]  Kolumbán, G., Kennedy, M.P., and Chua, L.O. (1997), The role of synchronization in digital communications using chaos - Part I: Fundamentals of digital communications, IEEE Transactions on Circuits and Systems I, 44, 927-936.
  7. [7]  Matthews, R. (1989), On the derivation of a "chaotic" encryption algorithm, Cryptologia, XIII, 29-42.
  8. [8]  Kocarev, L., Halle, K.S., Eckert, K., Chua, L.O., and Parlitz, U. (1992), Synchronization in chaotic systems, International Journal of Bifurcation and Chaos, 2 (3), 709-713.
  9. [9]  Baptista, M.S.(1998), Cryptography with chaos, Physical Letter A, 240 (1-2), 50-54.
  10. [10]  Fridrich, J. (1998), Symmetric ciphers based on two-dimensional chaotic maps, International Journal of Bifurcation and Chaos, 8 (6), 1259-1284.
  11. [11]  Alvarez, E., Fernandez, A., Garcia, P., Jimenez, J., and Marcano, A. (1999), New approach to chaotic encryption, Physics Letters A, 263 (4-6), 373-375.
  12. [12]  Ashwin, P. (2003), Synchronization from chaos, Nature, 422, 384-385.
  13. [13]  Argyris, A., Syvridis, D., Larger, L., Annovazzi-Lodi, V., Colet, P., Fischer, I., Garcia-Ojalvo, J., Mirasso, C.R., Pesquera, L., and Shore, K.A. (2005), Chaos-based communications at high bit rates using commercial fibre-optic links, Nature, 438, 343-346.
  14. [14]  Shore, K.A., Spencer, P.S., Pierce, I. (2008), Synchronization of chaotic semiconductor lasers, in: A.N. Pisarchik (Ed.), Recent Advances in Laser Dynamics: Control and Synchronization, Kerala: Research Singpost, 79-104.
  15. [15]  Pisarchik, A.N. and Ruiz-Oliveras,F.R. (2010), Optical chaotic communication using generalized and complete synchronization, IEEE Journal of Quantum Electronics, 46 (3), 279-284.
  16. [16]  Annovazzi-Lodi, V., Donati, S., and Sciré, A. (1996), Synchronization of chaotic injected-laser systems and its application to optical cryptography, IEEE Journal of Quantum Electronics, 32, 953-955.
  17. [17]  García-López, J.H., Jaimes-Reátegui, R., Chiu-Zarate, R., Lopez-Mancilla, D., Ramirez-Jimenez, R., and Pisarchik, A.N. (2008), Secure computer communication based on chaotic Rössler oscillators, The Open Electrical & Electronic Engineering Journal , 2, 41-44.
  18. [18]  Zanin, M. and Pisarchik, A.N. (2011), Application of Boolean networks to cryptography and secure communication, Nonlinear Science Letters B: Chaos, Fractal and Synchronization, 1 , 25-32.
  19. [19]  Zanin, M., Sevilla-Escoboza, R., Jaimes-Reátegui, R., García-López, J.H., and Pisarchik, A.N. (2013), Synchronization attack of chaotic communication systems, Discontinuity, Nonlinearity and Complexity, 2 (4), 333-343.
  20. [20]  Jiménez-Rodríguez, M., Jaimes-Reátegui, R., and Pisarchik, A.N. (2012), Secure communication based on chaotic cipher and chaos synchronization, Discontinuity, Nonlinearity and Complexity, 1, 57-68.
  21. [21]  MuJing, T. Chao, Gong-Huan, D. (2003), Synchronization of the time-varying parameter chaotic system and its application to secure communications, Chinese Physics, 12, 381-388.
  22. [22]  Pisarchik, A.N., Zanin, M. (2012), Chaotic map cryptography and security, In: Horizons in Computer Science, 4, Ed. T.S. Clary, NOVA Publishers, 301-332.
  23. [23]  García-López, J.H., Jaimes-Reátegui, R., Pisarchik, A.N., Medina-Gutiérrez, C., Jiménez-Godinez, J.C., Murguía- Hernandez, A.U., and Valdivia, R. (2005), Novel communication scheme based on chaotic Rössler circuits, Journal of Physics: Conference Series, bf 23, 176-184.