Skip Navigation Links
Discontinuity, Nonlinearity, and Complexity

Dimitry Volchenkov (editor), Dumitru Baleanu (editor)

Dimitry Volchenkov(editor)

Mathematics & Statistics, Texas Tech University, 1108 Memorial Circle, Lubbock, TX 79409, USA


Dumitru Baleanu (editor)

Cankaya University, Ankara, Turkey; Institute of Space Sciences, Magurele-Bucharest, Romania


The Double Exponential Formula as a Gauss Quadratures Replacement for Numerical Integration

Discontinuity, Nonlinearity, and Complexity 4(4) (2015) 499--509 | DOI:10.5890/DNC.2015.11.011

Dariusz W. Brzeziński; Piotr Ostalczyk

Institute of Applied Computer Science, Lodz University of Technology, 18/22 Stefanowskiego St., 90-924 Łodź, Poland

Download Full Text PDF



We propose to replace the Gauss Quadratures with a numerical integration method known as the Double Exponential (DE) Formula. The numerical quadrature built upon it is at least equivalently accurate and much simpler to customize and apply in situations when tabulated values of the Gauss Quadratures’ nodes and weights can not be applied. The DE Formula was developed for integrals with endpoint singularities. However, we confirm that it can be successfully applied to any integral and interval, for which the Gauss Quadratures have been usually selected. To remain compact, the following presentation focuses only on the most difficult integrals, e.g. the improper integrals and the integrals with endpoint singularities. The main part of the paper consists of the calculations accuracy comparison between numerical quadrature based upon the DE Formula and the Gauss-Laguerre, the Gauss-Hermite or Gauss-Chebyshev Quadratures.


  1. [1]  Demidowicz, B.P., Maron, I.A., and Szuwałowa (1965), Metody Numeryczne: Państwowe Wydawnictwo Naukowe, Warszawa. (in Polish).
  2. [2]  Mysovskih, I.P. (1969), Lectures On Numerical Methods, Noordhoff.
  3. [3]  Kythe, P.K. and Schaferkotter, M.R. (2005), Handbook of Computational Methods for Integration, Chapman & Hall/CRC.
  4. [4]  Burden, R.L. and Faires, J.D. (2003), Numerical Analysis, 5th ed.: Brooks/Cole Cengage Learning, Boston.
  5. [5]  Chapra, S.C. and Canale, R.P. (2010), Numerical Methods for Engineers, Sixth Edition, McGraw-Hill Companies, Inc.
  6. [6]  Hjorton-Jensen,M. (2009), Computational Physics, University of Oslo.
  7. [7]  Shampine, L.F., Allen, R.C. and Pruess, S. (1997), Fundamentals Of Numerical Computing,Wiley.
  8. [8]  Mathews, J.H. and Fink, K.D. (1999), Numerical Methods Using Matlab, 3rd Edition, Prentice Hall.
  9. [9]  Krylov, V.I. (1967), Priblizhennoe vychislenie integralov, 2e izd. Nauka. (in Russian).
  10. [10]  Kahaner, D., Moler, C. and Nash, S. (1989), Numerical Methods And Software, Prentice Hall.
  11. [11]  Conte, S.D. and de Boor, C. (1980), Elementary Numerical Analysis. An Algorithmic Approach, 3rd Edition, McGraw- Hill Book Company.
  12. [12]  Quarteroni, A., Sacco, R. and Salieri, F. (2000), Numerical Mathematics, Springer.
  13. [13]  Kiusalaas, J. (2005), Numerical Methods in Engineering With Python, Cambridge University Press.
  14. [14]  Abramowitz, M. and Stegun, I.A. (1968), Handbook of Mathematical Functions, Applied Mathematics Series Dover Publications, NY.
  15. [15]  Stroud, A.H. and Secrest, D. (1966), Gaussian Quadrature Formulas, Prentice-Hall, Englewood Cliffs, NJ.
  16. [16]  Desmarais, R.N. (1975), Programs For Computing Abscissas and Weights For Classical and Nonclassical Gaussian Quadrature Formulas, NASA Technical Note, NASA TN D-7924, NASA, Washington D.C.
  17. [17]  Gautschi,W. (2004), Numerical Mathematics And Scientific Computation. Orthogonal Polynomials: Computation and Approximation, Oxford Science Publication.
  18. [18]  Lau, H.T. (1995), A Numerical Library In C For Scientists And Engineers, CRC Press.
  19. [19]  Press, W.H., Teukolsky, S.A., Vetterling, W.T. and Flannery, B.P. (2007), Numerical Recipes. The Art of Scientific Computing, Third Edition, Cambridge University Press, 172-179.
  20. [20]  Brzeziński, D. and Ostalczyk, P. (2012), Numerical Evaluation of Fractional Differ-integrals of Some Periodical Functions via the IMT Transformation: Bulletin of the Polish Academy of Sciences Technical Sciences, 60(2), 285-292.
  21. [21]  Brzeziński, D.W. and Ostalczyk, P. (2014), High-accuracy Numerical IntegrationMethods for Fractional Order Derivatives and Integrals Computations: Bulletin of the Polish Academy of Sciences Technical Sciences, 62(4).
  22. [22]  Mori, M. (1990), Developments in The Double Exponential Formulas for Numerical Integration, Proceedings of the International Congress of Mathematicians, Kyoto, Japan.
  23. [23]  Stenger, F. (1973), Integration Formulae Based On The Trapezoidal Formula, J. Inst. Math. Appl., 103-114.
  24. [24]  Waldvogel, J. (2011), Towards A General Error Theory of the Trapezoidal Rule, Approximation and Computation, Springer Verlag.
  25. [25]  Korobov, N.M. (1963), Number-Theoretic Methods of Approximate Analysis, GIFL, Moscow. (in Russian).
  26. [26]  Schwartz, C. (1969), Numerical Integration of Analytic Functions, Journal of Computational Physics, 4, 19-29.
  27. [27]  Haber, S. (1999), The Tanh Rule For Numerical Integration, SIAM J. Numer. Anal., 14(4).
  28. [28]  Takahasi, H. and Mori, M. (1974), Double Exponential Formulas for Numerical Integration, Publ. RIMS Kyoto Univ., 9, 721-741.
  29. [29]  Takahasi, H. (1973), Quadrature Formulas Obtained by Variable Transformation, Numer. Math., 21, Springer Verlag, 206-219.
  30. [30]  Sidi, A. (1993), A New Variable Transformation for Numerical Integration, in H. Brass and G.Hammerlin (editors) Numerical Integration IV , Birkhauser, Berlin ISNM 112 , pp. 359-373.
  31. [31]  Mori, M. and Sugihara, M. (2001), The Double-exponential Transformation in Numerical Analysis, Journal of Computational and Applied Mathematics, 127, 287-296.
  32. [32]  The GNU Multiple Precision Floating-Point Reliable Library,
  33. [33]  The GNU Multiple Precision Arithmetic Library,
  34. [34]  Evans, G.A., Forbes, R.C., and Hyslop, J.(1984), The Tanh Transformation for Singular Integrals, Intern. J. Computer Math 15, 339-358.
  35. [35]  Overton, M. (2001), Numerical Computing with IEEE Floating Point Arithmetic, SIAM.
  36. [36]  Wilkinson, J.H. (1994), Rounding Errors in Algebraic Processes, Dover, New York.
  37. [37]  Brisebarre, N. and Muller, J.M. (2007), Correct Rounding of Algebraic Functions, Theoretical Informatics and Applications, Jan-March 2007, 47, 71-83.
  38. [38]  Brisebarre, N. and Muller, J.M. (2008), Correctly Rounded Multiplication by Arbitrary Precision Constants, IEEE Transactions on Computers, 57(2), 165-174.
  39. [39]  Muller, J.M., Brisebarre, N., Dinechin De, F., Jeannerod, C.P., Lefevre, V., Melquiond, G., Revol, N., Stehle, D. and Torres, S. (2010), Handbook of Floating-Point Arithmetic, Birkhauser Boston, New York, NY.
  40. [40]  Ghazi, K.R., Lefevre, V., Theveny, P., and Zimmermann, P. (2001), Why and how to use arbitrary precision, IEEE Computer Society, 12(3).