Skip Navigation Links
Discontinuity, Nonlinearity, and Complexity

Dimitry Volchenkov (editor), Dumitru Baleanu (editor)

Dimitry Volchenkov(editor)

Mathematics & Statistics, Texas Tech University, 1108 Memorial Circle, Lubbock, TX 79409, USA

Email: dr.volchenkov@gmail.com

Dumitru Baleanu (editor)

Cankaya University, Ankara, Turkey; Institute of Space Sciences, Magurele-Bucharest, Romania

Email: dumitru.baleanu@gmail.com


A Method for Generating Lie Algebras and Applications

Discontinuity, Nonlinearity, and Complexity 1(3) (2012) 211--224 | DOI:10.5890/DNC.2012.05.004

Yufeng Zhang

College of Sciences, China University of Mining and Technology, Xuzhou 221116, P. R. China

Download Full Text PDF

 

Abstract

A way for generating Lie algebras from a Lie subalgebra of the Lie algebra A1 is proposed for which a few enlarged Lie algebras are constructed. By establishing their loop algebras and introducing Lax pairs, we obtain two integrable Hamiltonian hierarchies of evolution type, one of them reduces to the well-known nonlinear Schr¨odinger equation, another is a nonlinear integrable coupling of the Kaup-Newell (KN) hierarchy,which reduces to a coupled nonlinear integrable model with Hamiltonian structure.

Acknowledgments

This work was supported by Natural Science Foundatrion of Liaoning Province (grant number: 20092173).

References

  1. [1]  Tu, G.Z. (1983), A simple approach to Hamiltonian structures of soliton equations-I, Nuovo. Cimento., 73B(1), 145-160.
  2. [2]  Tu, G.Z. (1988), A family of new integrable systems and its Hamiltonian structure, Sci. Sin. A, 12, 1244-1253.
  3. [3]  Tu, G.Z. (1989), The trace identity, a powerful tool for constructing the Hamiltonian structure of integrable systems, J. Math. Phys., 30(2), 330-338.
  4. [4]  Ma, W.X. (1992), A new hierarchy of Liouville integrable generalized Hamiltonian equations and its reduction, Chin. J. Contemp. Math., 13(1), 79-89.
  5. [5]  Tu, G.Z. and Ma,W.X. (1992), An algebraic approach for extending Hamiltonian operators, J. Partial Differ. Eqs., 3(1), 53-56.
  6. [6]  Ma, W.X. (1992), An approach for constructing nonisospectral hierarchies of evolution equations, J. Phys. A: Math. Gen., 25, L719-L726.
  7. [7]  Fan, E.G. (2000), Integrable evolution systems based on Gerdjikov-Ivanov equations, bi-Hamiltonian structure, finite-dimensional integrable systems and N-fold Darboux transformation, J. Math. Phys., 41(11), 7769-7782.
  8. [8]  Ma, W.X. and Fuchssteiner, B. (1996), Integrable theory of the perturbation equations, Chaos, Solitons and Fractals, 7, 1227-1250.
  9. [9]  Ma, W.X. (2000), Integrable couplings of soliton equations by perturbations I-A general theory and application to the KdV hierarchy,Methods Appl. Anal., 7, 21-56.
  10. [10]  Ablowitz, M.J., Chakravarty, S. and Halburd, R.G. (2003), Integrable systems and reductions of the self-dual Yang-Mills equations, J. Math. Phys., 44(8), 3147-3173.
  11. [11]  Ma,W.X. (2011), Nonlinear continuous integrable Hamiltonian couplings, Appl.Math. Comput., 217, 7238-7244.
  12. [12]  Ma,W.X. and Zhu, Z.N. (2010), Constructing nonlinear discrete integrable Hamiltonian couplings, Comput.Math. Appl., 60, 2601-2608.
  13. [13]  Tu, G.Z. (1989), On Liouville integrability of zero-curvature equations and Yang hierarchy, J. Phys. A., 22, 2375- 2392.
  14. [14]  Blaszak, M. and Szablikowski, B.M. (2002), Classical R-matrix theory of dispersionless systems: I: (1+)1-dimensional theory, J. Phys. A., 35, 10325-10347.