Skip Navigation Links
Journal of Vibration Testing and System Dynamics

C. Steve Suh (editor), Pawel Olejnik (editor),

Xianguo Tuo (editor)

Pawel Olejnik (editor)

Lodz University of Technology, Poland

Email: pawel.olejnik@p.lodz.pl

C. Steve Suh (editor)

Texas A&M University, USA

Email: ssuh@tamu.edu

Xiangguo Tuo (editor)

Sichuan University of Science and Engineering, China

Email: tuoxianguo@suse.edu.cn


The Building Blocks of the Spiral Arms in Galaxies

Journal of Vibration Testing and System Dynamics 8(2) (2024) 155--171 | DOI:10.5890/JVTSD.2024.06.001

Mirella Harsoula, Athanasios C. Tzemos

Research Center for Astronomy and Applied Mathematics of the Academy of Athens, Soranou Efessiou 4, 11527, Athens, Greece

Download Full Text PDF

 

Abstract

This is a review paper on the main theories of orbital mechanism that support the spiral arms in the case of grand design galaxies as well as in the case of barred spiral galaxies. While, in the first case stable periodic orbits form families of precessing ellipses that produce spiral density waves similar to those observed in real grand design galaxies, in the second case the spiral structure is supported by sticky chaotic orbits along unstable asymptotic manifolds. This mechanism is valid in the case of one pattern speed as well as of two different pattern speeds, for the bar and the spiral structure. Finally, in the case where the bar rotates much faster than the spiral arms, perturbed precessing ellipses can support spiral density waves.

References

  1. [1]  Hammer, O. (2016), D\"{urer's Dirty Secret. The Perfect Shape: Spiral Stories}, Springer International Publishing, 173-175.
  2. [2]  Bertin, G., Lin, C.C., Lowe, S.A., and Thurstans, R.P. (1989), Modal approach to the morphology of spiral galaxies. II. Dynamical mechanisms, The Astrophysical Journal, 338, 78-103.
  3. [3]  Donner, K.J. and Thomasson, M. (1994), Structure and evolution of long-lived spiral patterns in galaxies, Astronomy and Astrophysics, 290, 785-795.
  4. [4]  Contopoulos, G. (2002), Order and Chaos in Dynamical Astronomy, Berlin, Springer.
  5. [5]  Contopoulos, G. (1970), Gravitational theories of spiral structure, Proceedings of I.A U. Symposium, Dordrecht: D. Reidel Publishing Co., 38, 303-316.
  6. [6]  Vandervoort, P.O. (1971), Nonlinear density waves in galaxies, The Astrophysical Journal, 166, 37-58.
  7. [7]  Norman, C.A. (1978), A non-linear theory of spiral density waves, Monthly Notices of the Royal Astronomical Society, 182, 457-472.
  8. [8]  Lindblad, B. (1940), On the interpretation of spiral structure in the nebulae, The Astrophysical Journal, 92, 1-26.
  9. [9]  Lindblad, B. (1961), On the formation of dispersion rings in the central layer of a galaxy, Stockholms Observatoriums Annaler, 21, 37.
  10. [10]  Lin, C. and Shu, F. (1964), On the spiral structure of disk galaxies, The Astrophysical Journal, 140, 646-655.
  11. [11]  Lin, C. and Shu, F. (1966), On the spiral structure of disk galaxies, II. Outline of a theory of density waves, Proceedings of the National Academy of Sciences, 55, 229-234.
  12. [12]  Contopoulos, G. (1975), Inner Lindblad resonance in galaxies. Nonlinear theory. I., The Astrophysical Journal, 201, 566-584.
  13. [13]  Kalnajs, A.J. (1973), Spiral structure viewed as a density wave, Proceedings of the Astronomical Society of Australia, 2, 174-177.
  14. [14]  Contopoulos, G. and Grosb\"{o}l, P. (1986), Stellar dynamics of spiral galaxies: nonlinear effects at the 4/1 resonance, Astronomy and Astrophysics, 155, 11-23.
  15. [15]  Patsis, P.A., Contopoulos, G., and Grosb\"{o}l, P. (1991), Self-consistent spiral galactic models, Astronomy and Astrophysics, 243, 373-380.
  16. [16]  Patsis, P.A. and Grosb\"{o}l, P. (1996), Thick spirals: dynamics and orbital behavior, Astronomy and Astrophysics, 315, 371-383.
  17. [17]  Pichardo, B., Martos, M., Moreno, E., and Espresate, J. (2003), Nonlinear effects in models of the galaxy. I. Midplane stellar orbits in the presence of three-dimensional spiral arms, The Astrophysical Journal, 582, 230-245.
  18. [18]  Efthymiopoulos, Ch. (2010), Special features of galactic dynamics: Disc dynamics, The European Physical Journal Special Topics, 186, 91-122.
  19. [19]  Tsigaridi, L. and Patsis, P.A. (2013), The backbones of stellar structures in barred-spiral models - the concerted action of various dynamical mechanisms on galactic discs, Monthly Notices of the Royal Astronomical Society, 434, 2922-2939.
  20. [20]  Chaves-Velasquez, L., Patsis, P.A., Puerari, I., Moreno, E., and Pichardo, B. (2019), Dynamics of thick, open spirals in perlas potentials, The Astrophysical Journal, 871, 79-94.
  21. [21]  Harsoula, M., Zouloumi, K., Efthymiopoulos, C., and Contopoulos, G. (2021), Precessing ellipses as the building blocks of spiral arms, Astronomy and Astrophysics, 655, A55-71.
  22. [22]  Romero-Gomez, M., Masdemont, J.J., Athanassoula, E., and Garcia-Gomez, C. (2006), The origin of rR1 ring structures in barred galaxies, Astronomy and Astrophysics, 453, 39-45.
  23. [23]  Voglis, N., Tsoutsis, P., and Efthymiopoulos, C. (2006), Invariant manifolds, phase correlations of chaotic orbits and the spiral structure of galaxies, Monthly Notices of the Royal Astronomical Society, 373, 280-294.
  24. [24]  Danby, J.M.A. (1965), The formation of arms in barred spirals, The Astronomical Journal, 70, 501-512.
  25. [25]  Patsis, P.A. and Tsigaridi, L. (2017), The flow in the spiral arms of slowly rotating bar-spiral models, Astoshysics and Space Science, 362, 129-146.
  26. [26]  Efthymiopoulos, C., Harsoula, M., and Contopoulos, G. (2020), Manifold spirals in barred galaxies with multiple pattern speeds, Astronomy and Astrophysics, 636, A44-56.
  27. [27]  Miyamoto, M. and Nagai, R. (1975), Three-dimensional models for the distribution of mass in galaxies, Publications of the Astronomical Society of Japan, 27, 533-543.
  28. [28]  Dehnen, W. (1993), A family of potential-density pairs for spherical galaxies and bulges, Monthly Notices of the Royal Astronomical Society, 265, 250-256.
  29. [29]  Pettitt, A.R., Dobbs, C.L., Acreman, D.M., and Price, D.J. (2014), The morphology of the Milky Way - I. Reconstructing CO maps from simulations in fixed potentials, Monthly Notices of the Royal Astronomical Society, 444, 919-941.
  30. [30]  Cox, D.P. and Gomez, G.C. (2002), Analytical expressions for spiral arm gravitational potential and density, The Astrophysical Journal Supplement Series, 142(2), 261-267.
  31. [31]  Gerhard, O., in Da Costa, G.S., Sadler, E.M., and Jerjen, H. (eds) (2002), The Galactic Bar, The Dynamics, Structure and History of Galaxies: A Workshop in Honour of Professor Ken Freeman, ASP Conference Series, 273, 73-83.
  32. [32]  Tsoutsis, P., Efthymiopoulos, C., and Voglis, N. (2008), The coalescence of invariant manifolds and the spiral structure of barred galaxies, Monthly Notices of the Royal Astronomical Society, 387, 1264-1280.
  33. [33]  Tsoutsis, P., Kalapotharakos, C., Efthymiopoulos, C., and Contopoulos, G. (2009), Invariant manifolds and the response of spiral arms in barred galaxies, Astronomy and Astrophysics, 495, 743-758.
  34. [34]  Harsoula, M., Efthymiopoulos, C., and Contopoulos, G. (2016), Analytical forms of chaotic spiral arms, Monthly Notices of the Royal Astronomical Society, 459, 3419-3431.
  35. [35]  Buta, R. (2013), in `Secular Evolution of Galaxies', XXIII Canary Islands Winter School of Astrophysics, Falcon-Barroso, J. and Knapen, J.H. (eds), Cambridge University Press.
  36. [36]  Efthymiopoulos, C. (2012), Canonical Perturbation Theory, Stability and Diffusion in Hamiltonian Systems: Applications in Dynamical Astronomy, in Cincotta P.M., Giordano C.M., Efthymiopoulos, C. (eds.) Third La Plata Internat. School on Astron. Geophys.'', Asociacion Argentina de Astronomia, La Plata.
  37. [37]  Harsoula, M., Efthymiopoulos, C., Contopoulos, G., and Tzemos, A.C. (2022), Perturbed precessing ellipses as the building blocks of spiral arms in a barred galaxy with two pattern speeds, Astronomy and Astrophysics, 667, A33-42.
  38. [38]  Alvarez-Ramirez, M., Garcia-Saldana, J., and Medina, M. (2020), Periodic orbits in a three-dimensional galactic potential model via averaging theory, The European Physical Journal Plus, 135, 787-801.
  39. [39]  Contopoulos, G. and Barbanis, B. (1985), Resonant systems with three degrees of freedom, Astronomy and Astrophysics, 153, 44-54.
  40. [40]  Patsis, P. and Katsanikas, M. (2014), The phase space of boxy-peanut and X-shaped bulges in galaxies - I. Properties of non-periodic orbits, Monthly Notices of the Royal Astronomical Society, 445, 3525-3545.
  41. [41]  Patsis, P. and Katsanikas, M. (2014), The phase space of boxy-peanut and X-shaped bulges in galaxies - II. The relation between face-on and edge-on boxiness, Monthly Notices of the Royal Astronomical Society, 445, 3546-3556.
  42. [42]  Pucacco, G. (2009), Resonances and bifurcations in axisymmetric scale-free potentials, Monthly Notices of the Royal Astronomical Society, 399, 340-348.
  43. [43]  Gerhard, O. (2011), Pattern speeds in the Milky Way, Memorie della Societa Astronomica Italiana, 18, 185-188.
  44. [44]  Font, J., Beckman, J.E., James, P.A., and Patsis, P.A. (2019), Spiral structure in barred galaxies. Observational constraints to spiral arm formation mechanisms, Monthly Notices of the Royal Astronomical Society, 482, 5362-5378.