Skip Navigation Links
Journal of Vibration Testing and System Dynamics

C. Steve Suh (editor), Pawel Olejnik (editor),

Xianguo Tuo (editor)

Pawel Olejnik (editor)

Lodz University of Technology, Poland

Email: pawel.olejnik@p.lodz.pl

C. Steve Suh (editor)

Texas A&M University, USA

Email: ssuh@tamu.edu

Xiangguo Tuo (editor)

Sichuan University of Science and Engineering, China

Email: tuoxianguo@suse.edu.cn


Complete Bifurcation Trees of a Parametrically Driven Pendulum

Journal of Vibration Testing and System Dynamics 1(2) (2017) 93--134 | DOI:10.5890/JVTSD.2017.06.001

Yu Guo$^{1}$; Albert C.J. Luo$^{2}$

$^{1}$ McCoy School of Engineering, Midwestern State University, Wichita Falls, TX 76308, USA

$^{2}$ Department of Mechanical and Industrial Engineering, Southern Illinois University Edwardsville, IL 62026-1805, USA

Download Full Text PDF

 

Abstract

In this paper, the complete bifurcation trees of a parametrically driven pendulum are investigated using discrete implicit maps obtained through a mid-point scheme. Based on the discrete maps, mapping structures are developed for periodic motions in such a parametric system. Analytical bifurcation trees of periodic motions to chaos are developed through the nonlinear algebraic equations of such implicit maps. The stability and bifurcation of periodic motions is carried out through eigenvalue analysis. For a better understanding of the motion complexity in such a system, the corresponding frequency-amplitude characteristics are presented. Finally, numerical results of periodic motions are illustrated in verification. Many new periodic motions in the parametrically excited pendulum are discovered.

References

  1. [1]  Zaslavsky, G.M. and Chirikov, B.V. (1972), Stochastic instability of nonlinear oscillations, Soviet Physics USP, 14(5), 549-672.
  2. [2]  Luo, A.C.J. and Han, R.P.S. (2000), The dynamics of stochastic and resonant layers in a periodically driven pendulum, Chaos, Solitons and Fractals, 11, 2349-2359.
  3. [3]  Luo, A.C.J. (2000), Chaotic motions in the resonant separatrix band of a parametrically excited pendulum, Communications in Nonlinear Science and Numerical Simulation, 5(4), 135-140.
  4. [4]  Luo, A.C.J. (2001), Resonance and stochastic layer in a parametrically excited pendulum, Nonlinear Dynam- ics, 25(4), 355-367.
  5. [5]  Luo, A. C. J. (2002) Resonant layer in a parametrically excited pendulum, International Journal of Bifurcation and Chaos, 12(2), 409-419.
  6. [6]  Lu, C.Q. (2007), Chaos of a parametrically excited undamped pendulum, Communications in Nonlinear Science and Numerical Simulation, 12(1), 45-47.
  7. [7]  Lagrange, J. L. (1788), Mecanique Analytique, 2, (edition Albert Balnchard: Paris, 1965).
  8. [8]  Poincare, H. (1899), Methodes Nouvelles de la Mecanique Celeste, 3, Gauthier-Villars: Paris.
  9. [9]  van der Pol, B. (1920), A theory of the amplitude of free and forced triode vibrations, Radio Review, 1, 701-710, 754-762.
  10. [10]  Krylov, N.M. and Bogolyubov, N.N. (1935), Methodes approchees de la mecanique non-lineaire dans leurs application a l’Aeetude de la perturbation des mouvements periodiques de divers phenomenes de resonance s’y rapportant, Academie des Sciences d’Ukraine:Kiev. (in French).
  11. [11]  Hayashi, C. (1964), Nonlinear oscillations in Physical Systems (McGraw-Hill Book Company, New York).
  12. [12]  Nayfeh, A.H. (1973), Perturbation Methods (John Wiley, New York).
  13. [13]  Nayfeh, A.H. & Mook, D.T. (1979), Nonlinear Oscillation (John Wiley, New York).
  14. [14]  Rand, R.H. and Armbruster, D. (1987), Perturbation Methods, Bifurcation Theory, and Computer Algebra. Applied Mathematical Sciences, 65, Springer-Verlag: New York.
  15. [15]  Yuste, S.B. and Bejarano, J.D. (1986), Construction of approximate analytical solutions to a new class of non-linear oscillator equations, Journal of Sound and Vibration, 110(2), 347-350.
  16. [16]  Yuste, S.B. and Bejarano, J.D. (1990), Improvement of a Krylov-Bogoliubov method that uses Jacobi elliptic functions, Journal of Sound and Vibration, 139(1), 151-163.
  17. [17]  Coppola, V.T. and Rand, R.H. (1990), Averaging using elliptic functions: Approximation of limit cycle, Acta Mechanica, 81, 125-142.
  18. [18]  Luo, A.C.J. (2012), Continuous Dynamical Systems, HEP/L&H Scientific: Beijing/Glen Carbon.
  19. [19]  Luo, A.C.J. and Huang, J.Z. (2012), Approximate solutions of periodic motions in nonlinear systems via a generalized harmonic balance, Journal of Vibration and Control, 18, 1661-1871.
  20. [20]  Luo, A.C.J. and Huang, J.Z. (2012), Analytical dynamics of period-m flows and chaos in nonlinear systems, International Journal of Bifurcation and Chaos, 22, Article No. 1250093 (29 pages).
  21. [21]  Luo, A.C.J. (2015), Periodic flows to chaos based on discrete implicit mappings of continuous nonlinear systems, International Journal of Bifurcation and Chaos, 25(3), Article No. 1550044 (62 pages).
  22. [22]  Luo, A.C.J. (2015), Discretization and Implicit Mapping Dynamics (HEP/Springer: Beijing/Dordrecht).
  23. [23]  Luo, A.C.J. and Guo, Y. (2015), A semi-analytical prediction of periodic motions in Duffing oscillator through mapping structures, Discontinuity, Nonlinearity, and Complexity, 4(2), 13-44.
  24. [24]  Guo, Y. and Luo, A.C.J. (2015), On complex periodic motions and bifurcations in a periodically forced, damped, hardening Duffing oscillator, Chaos, Solitons and Fractals, 81(2015), 378-399.
  25. [25]  Guo, Y. and Luo, A.C.J. (2016), Routes of periodic motions to chaos in a periodically forced pendulum, International Journal of Dynamics and Control, doi:10.1007/s40435-016-0249-7.
  26. [26]  Luo, A.C.J. and Guo Y. (2016), Periodic motions to chaos in pendulum, International Journal of Bifurcation and Chaos, 26(9), 1650159 (64 pages).