Skip Navigation Links
Journal of Environmental Accounting and Management
António Mendes Lopes (editor), Jiazhong Zhang(editor)
António Mendes Lopes (editor)

University of Porto, Portugal


Jiazhong Zhang (editor)

School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi Province 710049, China

Fax: +86 29 82668723 Email:

Statistical Analysis of Association, Heterosis, and Inheritance of Grain Yield Contributing Quantitative Traits in Segregating Lines of Wheat (textit{Triticum aestivum L.})

Journal of Environmental Accounting and Management 12(1) (2024) 13--26 | DOI:10.5890/JEAM.2024.03.002

N. A. Panhwar$^{1}$, S. R. Ahmed$^{2}$, A. H. Lahori$^{3}$, M. Mierzwa-Hersztek$^{4}$, A. Afzal$^{5}$, V. Vambol$^{6,7\dag}$, \\ A. H. Memon$^{8}$, S. A. Panhwar$^{9}$, M. Tunio$^{3}$, S. A. Buriro$^{10}$, S. Vambol$^{11,12}$

Download Full Text PDF



Wheat (\textit{Triticum aestivum L.}) is great yielder with wide adaptability of stable food for huge population. In this study, twelve wheat F${}_{4}$ segregating lines of bread wheat (\textit{Triticum aestivum L.}) viz. Blue silver x M-154, Blue silver x Z.A-77, Blue silver x Pavon, M-154 x Blue silver, M-154 x Z.A-77, M-154 x Pavon, Z.A-77 x Blue silver, Z.A-77 x M-154, Z.A-77 x Pavon, Pavon x Blue silver, Pavon x M-154 and Pavon x Z.A-77 including their parent cultivars viz. Blue silver, M-154, Z.A-77, and Pavon were evaluated for high grain yield, Heterosis, correlation of traits and heritability. The results of this research showed highly significant differences ($\mathrm{>}$0.01\%) among genotypes for main spike length, spikelet main spike${}^{-1}$, grains main spike${}^{-1}$, 100-grain weight plant${}^{-1}$, and grain yield plant${}^{-1}$ except plant height and fertile tillers plant${}^{1}$. The transgressed segregation was noted in wheat F${}_{4}$ lines for morphological traits. High heritability was noted in plant height (55.17), tillers plant${}^{1}$ (51.0), main spike length (61.93), spikelet main spike${}^{-1}$ (60.18), grains main spike${}^{-1}$ (53.5), seed index plant${}^{-1}$ (71.0) and grain yield plant${}^{-1}$ (57.2). High heritability percentage for plant height (0.552\%) and 100 seed weight (0.71\%) was noted in wheat F${}_{4}$ line Blue silver x Pavon. High heritability was noted in number of tillers plant${}^{-1}$ of %main spike length (61.93\%) and spikelet main spike${}^{-1}$ (60.18\%) in Blue silver x Z.A-77. %High heritability for grains, main spike${}^{-1}$ (53.5\%) was confirmed in wheat F${}_{4}$ line Blue silver x M-154, for grain yield plant${}^{-1}$ (57.2\%) in wheat F${}_{4}$ line M-154 x Z.A-77. These results indicated that wheat F${}_{4}$ line Blue silver x Pavan, Blue silver x M154 and M154 x Z.A-77 offered favourable genetic material which could be included in the selection scheme for breeding high yield wheat under ex-situ conditions. Further studies are suggested for future breeding for wheat varietal development plan.


  1. [1]  Seyoum, E.G. and Sisay, A. (2021), Estimation of genetic variability, heritability and genetic advance in bread wheat (Triticum aestivum L.), International Journal of Research Studies in Agricultural Sciences, 7(9), 17-26.
  2. [2]  Rajshree, S. S. (2018), Assessment of genetic diversity in promising bread wheat (Triticum aestivum L.) genotypes, International Journal of Current Microbiology and Applied Sciences, 7(3), 2319-7706.
  3. [3]  Panhwar, N.A., Mierzwa-Hersztek, M., Baloch, G.M., Soomro, Z.A., Sial, M.A., Demiraj, E., and Lahori, A.H. (2021), Water stress affects the some morpho-physiological traits of twenty wheat (Triticum aestivum L.) genotypes under field condition, Sustainability, 13(24), 13736.
  4. [4]  Al Hinai, M.S., Ullah, A., Al-Rajhi, R.S., and Farooq, M. (2022), Proline accumulation, ion homeostasis and antioxidant defence system alleviate salt stress and protect carbon assimilation in bread wheat genotypes of Omani origin, Environmental and Experimental Botany, 193, 104687.
  5. [5]  Voloshyna, V., Denysiuk, O., Varina, H., Hrynzovskyi, A.M., Lutsak, O.O., Pletka, O.T., and Ancona, G. (2022), Psychological features of modern elderly peoples active life position, Wiadomo{sci Lekarskie}, 75(2), 333-338.
  6. [6]  Kuzminska, E., Omelchuk, S., Karlova, E., and Grinzovskyy, A. (2018), Drug-free modalities of irom deficiency conditions in Ukraine, Georgian Medical News, 279, 175-180.
  7. [7]  Vambol, S., Khan, N.A., Khan, A.H., Kiriyenko, M., Borysova, L., Taraduda, D., Zakora, A., and Bilotserkivska, N. (2020), Developed jet-centrifugal spray devices: experimental testing to establish the possibility of their application in plants spraying technologies, Journal of Achievements in Materials and Manufacturing Engineering, 102(1), 30-41
  8. [8]  Ziarati, P., Vambol, V., and Vambol, S. (2020), Use of inductively coupled plasma optical emission spectrometry detection in determination of arsenic bioaccumulation in Trifolium pratense L. from contaminated soil, Ecological Questions, 31(1), 15-22.
  9. [9]  Khan, R.A., El Morabet, R., Mallick, J., Azam, M., Vambol, V., Vambol, S., and Sydorenko, V. (2021), Rainfall Prediction using Artificial Neural Network in Semi-Arid mountainous region, Saudi Arabia, Ecological Questions, 32(4), 127-133.
  10. [10]  Vambol, S., Soomro, R., Ghauri, S P., Marri, A.A., Dung, H.T., Manzoor, N., Bano, S., Shahid, S., Asadullah, Farooq, A., and Lutsenko, Y. (2023), Viable forecasting monthly weather data using time series methods, Ecological Questions, 34(1), 117-126.
  11. [11]  Munns, R. and Gilliham, M. (2015), Salinity tolerance of crops -- what is the cost?, New Phytologist, 208, 668-673.
  12. [12]  Ahmed, N., Chowdhry, M.A., Khaliq, I., and Maekawa, M. (2007), Inheritance of yield and yield components of five-wheat hybrid population under drought conditions, Indonesian Journal of Agricultural Science, 8, 53-59.
  13. [13]  Cifci, A.E. (2021), Estimation of Heterosis, Correlation and Path analysis for grain yield per spike and some agronomic traits on durum wheat (Triticum durum desf), Pakistan Agricultural Scientists Forum, 22(3), 212, 747-752.
  14. [14]  Mohsin, T., Khan N., and Naqvi, F.N. (2009), Heritability, phenotypic correlation and path coefficient studies for some agronomic characters in synthetic elite lines of wheat, Journal of Food, Agriculture and Environment, 7, 278-282.
  15. [15]  Larik, A.S., Malik, S.I., Kakar, A.A., and Naz, M.A. (2000), Assessment of heritability and genetic advance for yield and yield components in Gossypium hirsutum L, Scientific Khyber, 13, 39-44.
  16. [16]  Khan, H., Rahman, H., Ahmed, H., and Ali, H. (2008), Magnitude of heterosis and heritability in sunflower over environments, Pakistan Journal of Botany, 1, 301-308.
  17. [17]  Aycicek, M. and Yildirim, T. (2006), Heritability of yield and some yield components in bread wheat (Triticum aestivum L) genotypes, Bangladesh Journal of Botany, 35(1), 17-22.
  18. [18]  Ansari, B.A., Rajper, M.M., Malik., A.J., and Magsi, A.G. (1991), Heretability estimates of yield and yield components in Triticum aestivum L., Pakistan Journal of Agriculture, Agricultural Engineering and Veterinary Sciences, (1-2), 35-40.
  19. [19]  Yao, J., Ma, H., Yang, X., uocai Yao, G., and Zhou, M. (2014), Inheritance of grain yield and its correlation with yield components in bread wheat (Triticum aestivum L.), African Journal of Biotechnology, 13(12), 1379-1385.
  20. [20]  Kamara, M.M., Rehan, M., Mohamed, A.M., El Mantawy, R.F., Kheir, A.M., Abd El-Moneim, D., and Mansour, E. (2022), Genetic potential and inheritance patterns of physiological, agronomic and quality traits in bread wheat under normal and water deficit conditions, Plants, 11(7), 952.
  21. [21]  Abinasa, M., Ayana, A., and Bultosa, G. (2011), Genetic variability, heritability and trait associations in durum wheat (Triticum turgidum L. var. durum) genotypes, African Journal of Agricultural Research, 6(17), 3972-3979.
  22. [22]  Kumar, B., Singh, C.M., and Jaiswal, K.K. (2013), Genetic variability, association and diversity studies in bread wheat (Triticum aestivum L.), The Bioscan, 8(1), 143-147.
  23. [23]  Kuczy{n}ska, A., Surma, M., and Adamski, T. (2007), Methods to predict transgressive segregation in barley and other self-pollinated crops, Journal of Applied Genetics, 48(4), 321-328.
  24. [24]  Zaazaa, E.I., Hager, M.A., and El-Hashash, E.F. (2012), Genetical analysis of some quantitative traits in wheat using six parameters genetic model, American-Eurasian Journal of Agricultural $\&$ Environmental Sciences, 12(4), 456-462.
  25. [25]  Sukumaran, S., Dreisigacker, S., Lopes, M., Chavez, P., and Reynolds, M.P. (2015), Genome-wide association study for grain yield and related traits in an elite spring wheat population grown in temperate irrigated environments, Theoretical and Applied Genetics, 128(2), 353-363.
  26. [26]  Farzamipour, M.R., Moghaddam, M., Aharizad, S., and Rashidi, V. (2013), Genetic variation for agronomic characters and drought tolerance among the recombinant inbred lines of wheat from the Norstar$\times$ Zagross cross, International Journal of Biosciences, 3(8), 76-86.
  27. [27]  Khanzada, R., Siyal, M.A., Bano, S., Syed, S., Arain, S., Nazeer, S., and Soothar, M.K. (2019), Heritability estimates in F4 generation of wheat (Triticum aestivum L.) under the agro-climatic condition of Tandojam, Sindh-Pakistan, Pure and Applied Biology, 8(2), 1240-1253.
  28. [28]  Aberkane, H., Amri, A., Belkadi, B., Filali-Maltouf, A., Kehel, Z., Tahir, I.S., and Tsivelikas, A. (2021), Evaluation of durum wheat lines derived from interspecific crosses under drought and heat stress, Crop Science, 61(1), 119-136.
  29. [29]  Yang, W.B., Qin, Z.L., Hui, S.U.N., Hou, Q.L., Gao, J.G., Chen, X.C., and Zhang, F.T. (2022), Analysis of combining ability for stem-related traits and its correlations with lodging resistance heterosis in hybrid wheat, Journal of Integrative Agriculture, 21(1), 26-35.
  30. [30]  Steel, R.G.D. and Torrie, J.H. (1980), Principles and Procedures of Statistics, A Biometrical Approach, 2nd Edition, McGraw-Hill Book Company, New York.
  31. [31]  Falconer, D.S. (1981), Introduction to Quantitative Genetics, 2nd ed. Longman, London.
  32. [32]  Fehr, W.R. (1987), Principles of Cultivar Development, Volume 1. Theory and technique, Macmillan publishing company.
  33. [33]  Kwon, S.I., Jang, Y.A., Kim, K.H., Jung, G.B., Kim, M.K., Hwang, H., Chae, M.J., Hong, S.C., So, K.H., Yun, S.G., and Kim, K.R. (2012), Heavy metal chemistry in soils received long-term application of organic wastes, Journal of Agricultural Chemistry and Environment, 1, 1-9.
  34. [34]  Bouyoucos, G.J. (1962), Hydrometer method improved for making particle size analysis of soils, Agronomy Journal, 53, 464-465. DOI:10.2134/agronj1962.00021962005400050028x.
  35. [35]  Zotarelli, L., Dukes, M.D., and Morgan, K.T. (2010), Interpretation of soil moisture content to determine soil field capacity and avoid over-irrigating sandy soils using soil moisture sensors, EDIS, (2).
  36. [36]  Jackson, M.L. (1958), Soil Chemical Analysis Englewood Cliffs, NT Prentice Hall Inc., p. 372-374.
  37. [37]  Olsen, S.R. and Sommers, L.E. (1982), Phosphorus. In: Page, A. L. (Ed.), Methods of Soil Analysis, Part 2, Chemical and Microbiological Properties. Agronomy Mongraphs, 9(2), 159-165.
  38. [38]  Kanyanjua, S.M., Keter, J.K., Okalebo, R.J., and Verchot, L. (2006), Identifying potassium-deficient soils in Kenya by mapping and analysis of selected sites, Soil Science, 171(8), 610-626.
  39. [39]  Jackson, M.L. (1969), Mineral Fraction for Soils, In: Soil Chemical Analyses Advanced Course. M.L. Jackson (eds). Univ. Wisconsin, Madison, WT. 100-168.
  40. [40]  Chaurasia, S., Singh, A.K., Songachan, L.S., Sharma, A.D., Bhardwaj, R., and Singh, K. (2020), Multi-locus genome-wide association studies reveal novel genomic regions associated with vegetative stage salt tolerance in bread wheat (Triticum aestivum L.), Genomics, 112(6), 4608-4621.
  41. [41]  El Hanafi, S., Cherkaoui, S., Kehel, Z., Sanchez-Garcia, M., Sarazin, J.B., Baenziger, S., and Tadesse, W. (2022), Hybrid seed set in relation with male floral traits, estimation of heterosis and combining abilities for yield and its components in wheat (Triticum aestivum L.), Plants, 11(4), 508.
  42. [42]  Chaudhry, A.R., Shah, A.H., Chaudhry, M.A., and Shah, M.L. (1986), Heritability estimates of plant height, yield and yield components in wheat (Triticum aestivum L.), Pakistan Journal of Agricultural Research, 22(4), 273-277.
  43. [43]  Khan, G.S., Chaudhry, A.R., Chaudhry, M.A., and Khan, M.A. (1985), Heritability estimates of plant height yield and yield components in wheat (Triticum aestivum L.), Agriculture Research Journal, 23(2), 83-86.
  44. [44]  Maloo, S.R. (1984), Genotypic variability for grain yield and its components in durum wheat, Madras Agricultural Journal, 71(7), 472-473.
  45. [45]  Yagdi, K. and Sozen, E. (2009), Heritability, variance components and correlation of yield and quality traits in durum wheat (Triticum durum Desf), Pakistan Journal of Botany, 41, 753-759.
  46. [46]  Aydin, N., Mut, Z., and Ozcan, H. (2010), Estimation of broad sense heritability for grain yield and some agronomic and quality traits of bread wheat (Triticum aestivum L), Journal of Food, Agriculture and Environment, 8, 419-421.
  47. [47]  Dhonde, S.R., Kute, N.S., Kanawade, D.G., and Sarod., N.D. (2000), Variability and character association in wheat (Triticum aestivum L), Agricultural Science Digest, 20, 99-101.
  48. [48]  Fida, M.M., Daniel, H., Shahzad, K., and Khan, H. (2001), Heritability estimation for yield and its components in wheat, Sarhad Journal of Agriculture, 17, 227-234.
  49. [49]  Rajper, M.M., Malik, A.J., and Ansari, B.A. (1990), Variability and heritability of yield and yield related characters in wheat (Triticum aestivum L.), Pakistan Journal of Agriculture, Agricultural Engineering and Veterinary Sciences, 6(1-2), 49-54.
  50. [50]  Khan, N. and Naqvi, F.N. (2011), Heritability of morphological traits in bread wheat advance lines under irrigation and non-irrigation conditions, Asian Journal of Agricultural Sciences, 3(3), 215-222.
  51. [51]  Ehdaie, B. and Waines, J.G. (1989), Genetic variation, heritability and path analysis in land races of bread wheat from southwestern Iran, Euphytica, 41, 183-190.
  52. [52]  Abdel-Hady, M.S. (2006), Invivo and invitro selection of superior durum wheat (Triticum durum Desf) genotypes, Journal of Applied Sciences Research, 2, 830-836.
  53. [53]  Malik, A.J., Rajper, M.M., Ansari, B.A., and Pragani, S.M. (1988), Genetic gain expected from selection for different quantitative characters in Triticum aestivum L, Pakistan Journal of Agriculture, Agricultural Engineering and Veterinary Sciences, 4(1-2), 80-84. %
  54. [54]  Kumar, J., Kumar, A., Kumar, M., Singh, S.K., and Singh, L. (2019) Inheritance pattern of genes for morpho-physiological and yield traits in wheat (Triticum aestivum L.), Cereal Research Communications, 47(2), 191-204.