Skip Navigation Links
Journal of Environmental Accounting and Management
António Mendes Lopes (editor), Jiazhong Zhang(editor)
António Mendes Lopes (editor)

University of Porto, Portugal


Jiazhong Zhang (editor)

School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi Province 710049, China

Fax: +86 29 82668723 Email:

A Life Cycle Assessment of Bread Production: A Cuban Case Study

Journal of Environmental Accounting and Management 8(2) (2020) 125--137 | DOI:10.5890/JEAM.2020.06.002

Karel Dieguez Santana$^{1}$, Yannay Cacas-Ledon$^{2}$, JulioA. Loureiro Salabarria$^{3}$, Amaury Perez-Martinez$^{4}$, Luis E. Arteaga-Perez$^{5}$

$^{1}$ Facultad Ciencias de la Vida, Universidad Estatal Amazónica, Paso Lateral km 2 1/2 Vía Tena, Puyo, Pastaza, Ecuador

$^{2}$ Department of Environmental Engineering, Environmental Science Faculty EULA-Chile Center, University of Concepción, Chile

$^{3}$ Escuela Superior Politécnica Agropecuaria deManabíManuel Félix López, Calceta, 10 de agosto #82 y Granda Centeno, Manabí, Ecuador

$^{4}$ Facultad Ciencias de la Tierra, Universidad Estatal Amazónica, Paso Lateral km 2 1/2 Via Tena, Puyo, Pastaza, Ecuador

$^{5}$ Laboratory of Thermal and Catalytic Processes (LPTC), Wood Engineering Department, University of Bio-Bio, Concepcion, Chile

Download Full Text PDF



The bread production sector is a major food business for Cuban population, which has grown slightly in recent years. In an attempt to pro-vide a better understanding about the food industry sustainability in Cuba, this paper presents an environmental life cycle assessment to estimate the impact of bread production on the environment. This study evaluates from factory gate to output analysis of the processing factory, which includes processing each product and packaging. Two scenarios were compared to assess the effect of bread production on deteriorated technology, the potential benefits of incorporating new technology and clean production practices. The main results show that the Bread Production System-year 2011 (Scenario 1), presents the main impacts on humans and the ecosystem; where the bread production process shows the greatest impacts, with inorganic respiration and acidification / eutrophication being the most relevant categories of this environmental study. In the comparative study, the implementation of new technology in the bread production process allows for greater environmental compatibility, and reduces the overall effects related to the different impact categories by 44%, and damage categories by 47%. Finally, the environmental results were compared with other published studies on bread production in different countries, and various improvementmeasures are proposed to reduce the environmental impacts of the production process.


  1. [1]  Andersson, K. and Ohlsson, T. (1999), Life cycle assessment of bread produced on different scales, The International Journal of Life Cycle Assessment, 4(1), 25-40.
  2. [2]  Andersson, K., Ohlsson, T., and Olsson, P. (1994), Life cycle assessment (LCA) of food products and production systems, Trends in Food Science & Technology, 5(5), 134-138.
  3. [3]  Andersson, K., Ohlsson, T., and Olsson, P. (1998), Screening life cycle assessment (LCA) of tomato ketchup: A case study, Journal of Cleaner Production, 6(3-4), 277-288.
  4. [4]  APHA and AWWA (2005), Standard methods for the examination of water and wastewater (21th ed.), Washington D.C: American Public Health Association.
  5. [5]  ASTM (2008), Standard Test Method for Determination of the Composition of Unprocessed Municipal Solid Waste.
  6. [6]  Bimpeh, M., Djokoto, E., Doe, H., and Jequier, R. (2006), Life Cycle Assessment (LCA) of the Production of Home made and Industrial Bread in Sweden, Retrieved from Sweden. 306/docs/acv-pain-de-suede.pdf
  7. [7]  Calderón, L.A., Iglesias, L., Laca, A., Herrero,M., and Díaz, M. (2010), The utility of Life Cycle Assessment in the ready meal food industry, Resources, Conservation and Recycling, 54(12), 1196-1207.
  8. [8]  Casas-Ledón, Y., Arteaga-Pérez, L.E., Dieguez-Santana, K., Domínguez, E.R., andMorales P´erez,M. (2015), Introduction of SOFC Technology into Cuban Energy Sector: Technical and Sustainability Analysis, Journal of Chemical Engineering Research Updates, 2, 36-50.
  9. [9]  Cho, I.H. and Peterson, D.G. (2010), Chemistry of bread aroma: A review, Food Science and Biotechnology, 19(3), 575- 582.
  10. [10]  CITMA. (1997), Ley No 81 del Medio Ambiente. Retrieved from La Habana, Cuba: legislacion/L-81.htm
  11. [11]  CITMA. (2010), Proyecto estrategia ambiental nacional 2011/2015, Retrieved from La Habana.
  12. [12]  Contreras, A.M., Rosa, E., Pérez, M., Van Langenhove, H., and Dewulf, J. (2009), Comparative Life Cycle Assessment of four alternatives for using by-products of cane sugar production, Journal of Cleaner Production, 17(8), 772-779.
  13. [13]  Cordella,M., Tugnoli, A., Spadoni, G., Santarelli, F., and Zangrando, T. (2008), LCA of an Italian lager beer, International Journal of Life Cycle Assessment, 13(2), 133-139.
  14. [14]  Díeguez-Santana, K., Arteaga-Pérez, L.E., Casas Ledon, Y., and Rodríguez Rico, I.L. (2013), Análisis de ciclo de vida y caracterización ambiental en una industria alimenticia, Revista Centro Azúcar, 40, 52-58.
  15. [15]  Dolci, G., Nessi, S., Rigamonti, L., and Grosso, M. (2016), Life cycle assessment of waste prevention in the delivery of pasta, breakfast cereals, and rice, Integrated Environmental Assessment and Management, 12(3), 445-458.
  16. [16]  Driscoll, J., Boyd, C., and Tyedmers, P. (2015), Life cycle assessment of the Maine and southwest Nova Scotia lobster industries, Fisheries Research, 172, 385-400.
  17. [17]  Espinoza-Orias, N., Stichnothe, H., and Azapagic, A. (2011), The carbon footprint of bread, The International Journal of Life Cycle Assessment, 16(4), 351-365.
  18. [18]  Fantke, P., Jolliet, O., Evans, J.S., Apte, J.S., Cohen, A.J., Hänninen, O.O., Hurley, F., Jantunen, M.J., Jerrett, M., Levy, J.I., Loh, M.M., Marshall, J.D., Miller, B.G., Preiss, P., Spadaro, J.V., Tainio, M., Tuomisto, J.T., Weschler, C.J., and McKone, T.E. (2015), Health effects of fine particulate matter in life cycle impact assessment: findings from the Basel GuidanceWorkshop, The International Journal of Life Cycle Assessment, 20(2), 276-288.
  19. [19]  Fusi, A., Guidetti, R., and Azapagic, A. (2015), Evaluation of environmental impacts in the catering sector: The case of pasta, Journal of Cleaner Production 132, 146-160.
  20. [20]  Geerken, T.H., Scholliers, D., De Vooght, C., Spirinckx, V., Van Holderbeke, M., and Vercalsteren, A. (2006), 5. Analysis of the 4 Cases 5.1. Case Study: Bread. Retrieved from Brussels, Belgium.
  21. [21]  Goedkoop, M. and Spriensma, R. (2001), The Ecoindicator99, damage oriented method for life cycle impact assessment, The Netherlands: PRe consultants B.V.
  22. [22]  Gong, M. and Wall, G. (2001), On exergy and sustainable development—Part 2: Indicators and methods, Exergy, An International Journal, 1(4), 217-233.
  23. [23]  González-García, S., Castanheira, É.G., Dias, A.C., and Arroja, L. (2013), Environmental life cycle assessment of a dairy product: the yoghurt, The International Journal of Life Cycle Assessment 18(4), 796-811.
  24. [24]  González-García, S., Gomez-Fernández, Z., Dias, A.C., Feijoo, G., Moreira, M. T., and Arroja, L. (2014), Life Cycle Assessment of broiler chicken production: a Portuguese case study, Journal of Cleaner Production, 74, 125-134.
  25. [25]  Gronlund, C. J., Humbert, S., Shaked, S., O’Neill, M. S. and Jolliet, O. (2015), Characterizing the burden of disease of particulate matter for life cycle impact assessment, Air Quality, Atmosphere & Health 8(1), 29-46.
  26. [26]  Gr ¨onroos, J., Seppälä, J., Voutilainen, P., Seuri, P., and Koikkalainen, K. (2006), Energy use in conventional and organic milk and rye bread production in Finland, Agriculture, Ecosystems & Environment, 117(2-3), 109-118.
  27. [27]  Hofstetter, P. (1998), Perspectives in life cycle impact assessment: a structured approach to combine models of the technosphere, ecosphere and valuesphere. (PhD Thesis), ETH, Z¨urich. Retrieved from (12’806)
  28. [28]  Huerta, A.R., Güereca, L.P., and Lozano,M.D.R. (2016), Environmental impact of beef production in Mexico through life cycle assessment, Resources, Conservation and Recycling, 109, 44-53.
  29. [29]  Hyde, K., Smith, A., Smith, M., and Henningsson, S. (2001), The challenge of waste minimisation in the food and drink industry: a demonstration project in East Anglia, UK, Journal of Cleaner Production, 9(1), 57-64.
  30. [30]  Iribarren, D., Hospido, A.,Moreira,M.T., and Feijoo, G. (2011), Benchmarking environmental and operational parameters through eco-efficiency criteria for dairy farms, Science of The Total Environment, 409(10), 1786-1798.
  31. [31]  ISO. (2006a), ISO 14040. Environmental Management. Life Cycle Assessment. Principles and Framework. Geneva, Switzerland: International Organization for Standardization.
  32. [32]  ISO. (2006b), ISO 14044. Environmental Management. Life Cycle Assessment. Requirements and Guidelines. Geneva, Switzerland: International Organization for Standardization.
  33. [33]  Jensen, J.K. and Arlbjørn, J.S. (2014), Product carbon footprint of rye bread, Journal of Cleaner Production, 82, 45-57.
  34. [34]  Korsaeth, A., Jacobsen, A.Z., Roer, A.G., Henriksen, T.M., Sonesson, U., Bonesmo, H., Skjelvåg, A.O. and Strømman, A.H. (2012), Environmental life cycle assessment of cereal and bread production in Norway, Acta Agriculturae Scandinavica, Section A — Animal Science, 62(4), 242-253.
  35. [35]  Kulak, M., Nemecek, T., Frossard, E., Chable, V. and Gaillard, G. (2015), Life cycle assessment of bread from several alternative food networks in Europe, Journal of Cleaner Production, 90, 104-113.
  36. [36]  Kulak,M., Nemecek, T., Frossard, E. and Gaillard, G. (2016), Eco-efficiency improvement by using integrative design and life cycle assessment: the case study of alternative bread supply chains in France, Journal of Cleaner Production, 112, 2452-2461.
  37. [37]  Mattsson, B. and Sonesson, U. (2003), Environmentally-friendly food processing: Woodhead publishing.
  38. [38]  McComas, C. and McKinley, D. (2008), Reduction of phosphorus and other pollutants from industrial dischargers using pollution prevention, Journal of Cleaner Production, 16(6), 727-733.
  39. [39]  Müller, K., Holmes, A., Deurer, M. and Clothier, B. E. (2015), Eco-efficiency as a sustainability measure for kiwifruit production in New Zealand, Journal of Cleaner Production, 106, 333-342.
  40. [40]  Narayanaswamy, V., Altham, J., Van Berkel, R. and McGregor, M. (2004), Environmental Life Cycle Assessment (LCA) Case Studies forWestern Australian Grain Products.
  41. [41]  Notarnicola, B., Tassielli, G., Renzulli, P.A. andMonforti, F. (2015), Energy flows and greenhouses gases of EU (European Union) national breads using an LCA (Life Cycle Assessment) approach, Journal of Cleaner Production, 140, 455-469.
  42. [42]  Notter, D.A. (2015), Life cycle impact assessment modeling for particulate matter: A new approach based on physicochemical particle properties, Environment International, 82, 10-20.
  43. [43]  ONE. (2011), Anuario Estadístico de Cuba 2011. Edicion 2012. Seccion 11 Industria Manufacturera. Retrieved from tabla cuadro.htm.
  44. [44]  ONE. (2014). Anuario Estadístico de Santa Clara 2014. Retrieved from Municipios/09%20Santa%20Clara.pdf
  45. [45]  Reinhardt, G.A., Braschkat, J., Patyk, A., and Quirin, M. (2003), Life cycle analysis of bread production: a comparison of eight different options. Paper presented at the 4th International Conference Life Cycle Assessment in the Agri-food Sector, Bygholm, Denmark.
  46. [46]  Roy, P., Nei, D., Orikasa, T., Xu, Q., Okadome, H., Nakamura, N., and Shiina, T. (2009), A review of life cycle assessment (LCA) on some food products, Journal of Food Engineering, 90(1), 1-10.
  47. [47]  Sundkvist, Å., Jansson, A. and Larsson, P. (2001), Strengths and limitations of localizing food production as a sustainability-building strategy—an analysis of bread production on the island of Gotland, Sweden, Ecological Economics, 37(2), 217-227.
  48. [48]  USEPA. (2000), AP 42. Compilation of Air Emission Factors, In Chapter 3: Stationary internal combustion sources (Fifth ed., Vol. I. Stationary Point and Area Sources).
  49. [49]  WHO. (2014), Metrics: Disability-Adjusted Life Year (DALY)—Quantifying the Burden of Disease from Mortality and Morbidity.