Skip Navigation Links
Journal of Environmental Accounting and Management
António Mendes Lopes (editor), Jiazhong Zhang(editor)
António Mendes Lopes (editor)

University of Porto, Portugal


Jiazhong Zhang (editor)

School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi Province 710049, China

Fax: +86 29 82668723 Email:

Evaluation of Technology Solutions for Municipal Waste Incineration Using LCA Results And Multi-Criteria Analysis

Journal of Environmental Accounting and Management 3(2) (2015) 169--180 | DOI:10.5890/JEAM.2015.06.006

Agnieszka Generowicz$^{1}$, Anna Henclik$^{2}$, Joanna Kulczycka$^{3}$, Zygmunt Kowalski$^{4}$

$^{1}$ Institute of Water Supply and Environmental Protection, Cracow University of Technology, 24 Warszawska St., 31-155 Cracow, Poland

$^{2}$ Mineral and Energy Economy Research Institute of the Polish Academy of Sciences, 7 Wybickiego St., 31-261 Cracow, Poland

$^{3}$ AGH, University of Science and Technology, Faculty of Management, 30 Mickiewicza St., 30-059 Cracow, Poland

$^{4}$ Institute of Chemistry and Inorganic Technology, Cracow University of Technology, 24 Warszawska St., 31-155 Cracow, Poland

Download Full Text PDF



Multi-criteria analysis was used to compare technology solutions for 3 chosen municipal waste incineration systems in Warsaw, Tarnobrzeg and Spittelau in Vienna. LCA results were used to calculate the value of the criteria applied in the multi-criteria analysis. The comprehensive comparative assessment of options for incineration of municipal waste took into account, as the partial indicators of impact categories, results obtained from LCA calculation and production cost. The functional unit of the system is 1 tonne of municipal waste treated by incineration. It includes the life cycle from the material and energy used (transport was excluded) based on real data, and from infrastructure based on data from the Ecoinvent database. The system boundaries of the analysis are from ‘cradle’ to ‘gate’. LCA results based on the data obtained were created using the ReCiPe method. As a result of the multi-criteria analysis, a solution was obtained which involved ranking the waste incineration options analysed from the most to least beneficial solution taking into account environmental and economic criteria. For all the options analysed, and using the multi-criteria analysis as well as the LCA method and regardless of the criteria hierarchy adopted, the waste incineration technology in Spittelau is selected as being ultimately more appropriate than the others. Incineration in Spittelau has a higher capacity and lower impact on the environment compared to that in Warsaw and Tarnobrzeg thanks to the highly efficient flue gas treatment systems installed, which are, however, very costly (average installation and running cost).


  1. [1]  Baumann, H. and Tillman, A.M. (2004), The Hitch Hiker's Guide to LCA. An orientation in life cycle assessment methodology and application. External organization, Lund, Sweden: Studentlitteratur.
  2. [2]  Belboom, S., Digneffe, J.M., Renzoni, R., Germain, A. and Léonard A. (2013), Comparing technologies for municipal solid waste management using life cycle assessment methodology: a Belgian case study, Int J Life Cycle Assess 18: 1513-1523.
  3. [3]  Beylot, A. and Villeneuve, J. (2013), Environmental impacts of residual Municipal Solid Waste incineration: A comparison of 110 French incinerators using a life cycle approach, Waste Management 33: 2781-2788.
  4. [4]  Brunner, P.H. and Rechberger, H. (2014), Waste to energy-key elements for sustainable waste management, Waste Management DOI:10.1016/j.wasman.2014.02.003,
  5. [5]  Cleary, J. (2009), Life cycle assessments of municipal solid waste management systems: A comparative analysis of selected peerreviewed literature, Environment International 35: 1256-1266.
  6. [6]  Czarnecka, W., Kulczycka, J. and Kowalski Z. (2008), Basic principles of waste management in the municipal and economic sectors in the Świętokrzyskie Province in the years 2003-2006, Czasopismo Techniczne Politechniki Krakowskiej 2-Ch/2008: 25-36.
  7. [7]  Directive 2008/98/EC on waste (Waste Framework Directive)
  8. [8]  den Boer, E., Czarnecka, W., Kowalski, Z., Kulczycka, J. and Szpadt, R. (2009), Ilość i skład odpadów komunalnych wytwarzanych w gospodarstwach domowych dużych miast Polski, Archiwuma Gospodarki Odpadami i Ochrony Środowiska 11(4): 75-90.
  9. [9]  Erkut, E., Karagiannidis, A., Perkoulidis, G. and Tjandra, S.A. (2008), A multicriteria facility location model for municipal solid waste management in North Greece, European Journal of Operational Research 187: 1402-1421.
  10. [10]  Ersoy, H. and Bulut, F. (2009), Spatial and multi-criteria decision analysis-based methodology for landfill site selection in growing urban regions, Waste Management & Research 27(5): 489-500.
  11. [11]  Fricke, K., Franke, H., Dichtl, N., Schmelz, K.G., Weiland, P. and Bidlingmaier, W. (2002), Biologische Verfahren zur Bio- und Grünabfallverwertung. In: Loll, U. (Eds.), ATV Handbuch - Mechanische und biologische Verfahren der Abfallbehandlung. Ernst & Sohn Verlag für Architektur und technische Wissenschaften, GmbH, Berlin, Germany.
  12. [12]  Garfì, M., Ferrer-Martí, L., Bonoli, A., and Tondelli, S. (2011), Multi-criteria analysis for improving strategic environmental assessment of water programmes. A case study in semi-arid region of Brazil, Journal of Environmental Management 92(3): 665-675.
  13. [13]  Generowicz, A. (2000), Indexes of evaluations for multi-criteria selection of choice of regional system of wastes management, Doctoral thesis. Cracow University of Technology .
  14. [14]  Generowicz, A., Kulczycka, J., Kowalski, Z. and Banach, M. (2011), Assessment of waste management technology using BATNEEC options, technology quality method and multi-criteria analysis, Journal of Environmental Management 92(4): 1314-1320.
  15. [15]  Gentil, E.C., Damgaard, A., Hauschild, M., Finnveden, G., Eriksson, O., Thorneloe, S., Kaplan, P.O., Barlaz, M., Muller, O., Matsui, Y., Ryota, I. and Christensen, T.H. (2010), Models For Waste Life Cycle Assessment: Review Of Technical Assumptions, Waste Management 30: 2636-2648.
  16. [16]  Gorsevski, P.V., Donevska, K.R., Mitorvski, C.D. and Frizado J.P. (2012), Integrating multi-criteria evaluation techniques with geographic information systems for landfill site selection: A case study using order weighted average, Waste Management 32: 287- 296.
  17. [17]  Kosińska, I. (2009), Comparison of landfill/incineration of municipal waste by analysis of the process in terms of the cumulative account (Porównanie składowania i spalania odpadów komunalnych metodą analizy procesu w ujęciu rachunku skumulowanego), MEERI Krakow (in Polish, not published).
  18. [18]  Kowalski, Z. (2005), Technological assumptions of the installation for the thermal utilisation of waste in the Machów heat and power plant PTU "RA-TAR" Sp. z o.o. in Tarnobrzeg (Założenia technologiczne instalacji do termicznej utylizacji odpadów w Elektrociepłowni Machów PTU "RA-TAR" Sp. z o.o. w Tarnobrzegu), Cracow University of Technology (in Polish, not published).
  19. [19]  Kulczycka, J. and Kowalski, Z. (2008), Principles of municipal waste management in Poland and selected regions of Europe, Polish Journal of Chemical Technology 10(4): 28-33.
  20. [20]  Kulczycka, J. (2009), Life cycle thinking in Polish official documents and research. The determination of the discount rate for green public procurement, International Journal Life Cycle Assessment 14: 375-378.
  21. [21]  Kulczycka, J. and Lelek, Ł. (2014), Tools for Promoting Environmental Sustainability in Poland [in:] Pathways to Environmental Sustainability. Springer International Publishing. 193-203.
  22. [22]  Kulczycka, J., Lelek, Ł., Lewandowska, A. and Zarebska, J. (2015), Life cycle assessment of municipal solid waste management - comparison of results using different LCA models, Polish Journal of Environmental Study 24(1): 125-140.
  23. [23]  Milutinović, B., Stefanović, G., Dassisti, M., Marković, D. and Vučković, G. (2014), Multi-criteria analysis as a tool for sustainability assessment of a waste management model, Energy 74, 190-201.
  24. [24]  Moles, R., Foley, W., Morrissey, J. and O'Regan, B. (2008), Practical appraisal of sustainable development—Methodologies for sustainability measurement at settlement level, Environmental Impact Assessment Review 28(2): 144-165.
  25. [25]  Morrissey, A.J.and Browne, J. (2004), Waste management models and their application to sustainable waste management, Waste Management 24: 297-308.
  26. [26]  Ning, S., Chang, N. and Hung, M. (2013), Comparative streamlined life cycle assessment for two types of municipal solid waste incinerator, Journal of Cleaner Production 53: 56-66.
  27. [27]  Pennington, D.W., Potting, J., Finnveden, G., Lindeijer, E., Jolliet, O., Rydberg, T. and Rebitzer, G. (2004), Life cycle assessment. Part 2: current impact assessment practice, Environment International 30(5): 721-739.
  28. [28]  PN-EN ISO 14040:2009, Environmental management - Life cycle assessment - Principles and framework, p. 22 Rebitzer, G., Ekvall, T., Frischknecht, R., Hunkeler, D., Norris, G., Rydberg, T., Schmidt, W.P., Suhh, S., Weidema, B.P. and Pennington, D.W. (2004), Life cycle assessment part 1: framework, goal and scope definition, inventory analysis, and applications, Environment International 30: 701-720.
  29. [29]  Russell, A., Ekvall, T. and Baumann, H. (2005), Life cycle assessment introduction and overview, Journal of Cleaner Production 13(13-14): 1207-1210.
  30. [30]  Winkler, J. and Bilitewski, B. (2007), Comparative Evaluation of Life Cycle Assessment Models For Solid Waste Management, Waste Management 27: 1021-1031.
  31. [31]  ZUSOK Information materials. Warsaw: [s.n.], 2007.