Skip Navigation Links
Journal of Environmental Accounting and Management
António Mendes Lopes (editor), Jiazhong Zhang(editor)
António Mendes Lopes (editor)

University of Porto, Portugal

Email: aml@fe.up.pt

Jiazhong Zhang (editor)

School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi Province 710049, China

Fax: +86 29 82668723 Email: jzzhang@mail.xjtu.edu.cn


Dynamic Eco-industrial Model of Forest Rich Developing Nations Application to the Bolivian Forestry Sector and National Economy

Journal of Environmental Accounting and Management 3(1) (2015) 1--22 | DOI:10.5890/JEAM.2015.03.001

Jose-Luis Izursa; David R. Tilley

Department of Environmental Science & Technology, University of Maryland, College Park, MD 20742, USA.

Download Full Text PDF

 

Abstract

We combined ecosystem simulation modeling with emergy accounting to develop the National Eco-industrial Forestry System (NEIFS), a spatially aggregated model for exploring the role that renewable (forests) and nonrenewable (natural gas) resources could play in the development of an underdeveloped nation. NEIFS was applied to simulate the Bolivian national economy considering the forestry and natural gas sectors under four different scenarios and for the time period between 2005 and 2205. The four scenarios (business-as-usual; increased domestic use; increased export of natural resources; and improved national industrialization) were simulated to observe the behavior of soil/carbon storage, wood reserves, natural gas reserve, national assets, money supply (M4), and total national debt. Results showed that people of Bolivia would enjoy twice the standard of living if its forest products sector were industrialized and it used more of its forest and gas domestically. Thus, simply increasing the exports of natural resources will not increase the well-being of Bolivians. Only when Bolivia’s forest products industry was restructured so that it processed the raw wood into manufactured products, did the country’s citizens see an increase in their well-being. Promisingly, NEIFS showed that this increase in standard of living must not come at the expense of depleting the forests. More simulations should be conducted with NEIFS to determine which rate of gas depletion can maximize the long-term well-beingof the nation’s citizens.

References

  1. [1]  Amado, T. J. C., Bayer, C., Conceição, P. C., Spagnollo, E., Campos, B. H. C. d. and Veiga, M. d. (2006). Potential of carbon accumulation in no-till soils with intensive use and cover crops in southern Brazil. Journal of environmental quality, 35, 1599- 1607.
  2. [2]  BCB. (2006). Banco Central de Bolivia - Estado de la deuda externa pública al 31 de Diciembre de 2005 (pp. 17): Gerencia de Operaciones Internacionales - Departamento de Deuda Externa.
  3. [3]  Bojanic, A. J. (2001). Balance is beautiful: Assessing sustainable development in the rain forests of the Bolivian Amazonia (pp. 251). Riberalta, Beni, Bolivia: PROMAB.
  4. [4]  CIA. (2006a, 11/10/2006). The World Factbook. Retrieved 11/10, 2006, from https://www.cia.gov/cia/publications/factbook/- index.html
  5. [5]  CIA. (2006b). The World Factbook. Retrieved 11/10/2006 https://www.cia.gov/cia/publications/factbook/index.html
  6. [6]  CIA. (2014). The World Factbook. Retrieved 9/17/2014 https://www.cia.gov/library/publications/the-world-factbook/geos/bl.html
  7. [7]  Cochrane, T. A., Cochrane, T. T., & Killeen, T. (2003). The digital land systems survey of the Amazon. Santa Cruz, Bolivia.
  8. [8]  Davis, L. S., Johnson, K. N., Bettinger, P. S., & Howard, T. E. (2001). Forest management: To sustain ecological economic, and social values (4th ed.): McGraw Hill.
  9. [9]  EIA. (2013, May 30, 2013). Country Analysis Note: Bolivia. International Energy Statistics. Retrieved 9/17, 2014, from http://www.eia.gov/countries/country-data.cfm?fips=BL
  10. [10]  Elbakidze, M., Andersson, K., Angelstam, P., Armstrong, G. W., Axelsson, R., Doyon, F., Pautov, Y. (2013). Sustained yield forestry in Sweden and Russia: how does it correspond to sustainable forest management policy? Ambio, 42(2), 160-173. doi: 10.1007/s13280-012-0370-6
  11. [11]  FAO. (2006). Global forest resources assessment 2005: Progress towards sustainable forest management FAO Forestry Paper 147 Rome: Food and Agriculture Organization of the United Nations
  12. [12]  FAO. (2007). FAOSTAT, forestry data. Retrieved 10/10, 2007, from http://faostat.fao.org/site/340/default.aspx
  13. [13]  Ferraro, P. J., Lawlor, K., Mullan, K. L., & Pattanayak, S. K. (2011). Forest Figures: Ecosystem Services Valuation and Policy Evaluation in Developing Countries. Review of Environmental Economics and Policy, 6(1), 20-44. doi: 10.1093/reep/rer019
  14. [14]  Fredericksen, T. S., Putz, F. E., Pattie, P., Pariona, W., & Peña-Claros, M. (2003). Sustainable forestry in bolivia beyond planned logging. Journal of Forestry, 37-40.
  15. [15]  Grigal, D. F. (2000). Effects of extensive forest management on soil productivity. For. Ecol. Manage., 138(167-185).
  16. [16]  Harrington, T. B., & Edwards, M. B. (1999). Understory vegetation, resource availability, and litterfall responses to pine thinning and woody vegetation control in longleaf pine plantations. Can. J. For. Res., 29, 1055-1064.
  17. [17]  INE. (2006a). Anuario estadístico 2005 (pp. 26). La Paz - Bolivia: Instituto Nacional de Estadística Bolivia.
  18. [18]  INE. (2006b). Estadísticas de Medio Ambiente 1995 - 2005 (pp. 109). La Paz: Instituto Nacional de Estadística Bolivia.
  19. [19]  ITTO. (2005). Revised International Tropical Timber Organization (ITTO) criteria and indicators for the sustainable management of tropical forests including reporting format ITTO Policy Development Series No 15 (pp. 42).
  20. [20]  Izursa, J.-L., Tilley, D. R., & Kangas, P. (2014). Sustainability Assessment of Certified Tropical Forestry using Emergy Analysis. Journal of Environmental Accounting and Management, 2(1), 73-89.
  21. [21]  Izursa, J. L. (2008). An ecological perspective of the energy basis of sustainable Bolivian natural resources: Forests and natural gas. (Ph.D. Marine Estuarine Environmental Sciences), Marine Estuarine Environmental Sciences, United States -- Maryland. Retrieved from http://search.proquest.com/docview/304565689?accountid=27502 Jordan, C. F. (1983). Productivity of tropical rain forest ecosystems and the implications for their use as future wood and energy sources. In F. B. Golley (Ed.), Tropical Rain Forests ecosystems - structure and function (pp. 117-136). Oxford: Elsevier Scientific Publishing Company.
  22. [22]  King, K. F. S. (1980). Contribution to social and economic development Commonwealth Forestry Review, 59(4), 515-525.
  23. [23]  Kirschbaum, M. U. F. (1999). CenW, a forest growth model with linked carbon, energy, nutrient and water cycles. Ecological Modelling, 118, 17-59.
  24. [24]  Klemmedson, J. O., Meier, C. E., & Campbell, R. E. (1990). Litter fall transfers of dry matter and nutrient in ponderosa pine stands. Can. J. For. Res., 20, 1105-1115.
  25. [25]  Landsberg, J. (2003). Modelling forest ecosystems: state of the art, challenges, and future directions. Can. J. For. Res., 33, 385-397.
  26. [26]  Larocque, G. R., Bhatti, J., & Arsenault, A. (2014). Integrated modelling software platform development for effective use of ecosystem models. Ecological Modelling, 288, 195-202. doi: 10.1016/j.ecolmodel.2014.06.011
  27. [27]  Li, L., Lu, H., Tilley, D.R., Ren, H., Shen, W., 2013a. The maximum empower principle: an invisible hand controlling the selforganizing development of forest ecosystems in south China. Ecological Indicators,29: 278-292 DOI: 10.1016/j.ecolind.2012.12.033
  28. [28]  Li, L.,D.R. Tilley, Lu, H., Ren, H., Qiu, G. 2013b. Comparison of energy systems minimodel to a process-based eco-physiological model for simulating forest growth. Ecological Modelling,263, 32-41 http://dx.doi.org/10.1016/j.ecolmodel.2013.04.019
  29. [29]  Li, L., Lu, H., Tilley, D.R., G. Qiu, 2014. Effect of time scale on accounting for renewable emergy in ecosystems located in humid and arid climates. Ecological Modelling,287, 1-8 http://dx.doi.org/10.1016/j.ecolmodel.2014.05.001
  30. [30]  Library of Congress. (2006). Country profile: Bolivia. Retrieved 08/13, 2007, from http://lcweb2.loc.gov/frd/cs/profiles/-Bolivia.pdf
  31. [31]  Malhi, Y., Baker, T. R., Phillips, O. L., Almeida, S., Alvarez, E., Arroyo, L., Lloyd, J. (2004). The above-ground coarse wood productivity of 104 Neotropical forest plots. Global Change Biology, 10, 563-591.
  32. [32]  Malhi, Y., & Grace, J. (2000). Tropical forests and atmospheric carbon dioxide. Tree, 15(8), 332-337.
  33. [33]  Malhi, Y., & Wright, J. (2004). Spatial patterns and recent trends in the climate of tropical rainforest regions. Phil. Trans. R. Soc. Lond., 359, 311-329.
  34. [34]  Odum, H. T. (1996). Environmental accounting: Emergy and environmental decision making. NY: John Wiley & Sons.
  35. [35]  Odum, H. T., & Odum, E. C. (2000a). Modeling for all scales: An introduction to system simulation: Academic Press.
  36. [36]  Odum, H. T., & Odum, E. C. (2000b). A Prosperous way Down: Principles and Policies. Colorado: Colorado University Press.
  37. [37]  Odum, H. T., & Peterson, N. (1996). Simulation and evaluation with energy systems blocks. Ecol. Model. , 93, 155-173.
  38. [38]  Saatchi, S. S., Houghton, R. A., Alvala, R., Soares, J. V., & Yu, Y. (2007). Distribution of aboveground live biomass in the Amazon basin. Global Change Biology, 13(4), 816-837.
  39. [39]  Schlesinger, W. H. (1984). Soil Organic Matter: A source of atmospheric CO2. In G. M. Woodwell (Ed.).The role of terrrestrial vegetation in the global carbon cycle: Measurement by remote sensing (pp. 111-127): John Wiley & Sons Ltd.
  40. [40]  Schlesinger, W. H., & Andrews, J. A. (2000). Soil respiration and the global carbon cycle. Biogeochemistry, 48, 7-20.
  41. [41]  SENAMHI. (2006). Servicio Nacional de Meteorología e Hidrología de Bolivia - Datos mensuales de precipitación. Retrieved 12/20, 2006, from http://www.senamhi.gov.bo/meteorologia/climatologia.php
  42. [42]  SIF. (2006). Superintendencia Forestal de Bolivia - Informe Anual 2005. (pp. 100). Santa Cruz de la Sierra - Bolivia.
  43. [43]  SPE. (2007). Petroleum Resources Management System. In O. a. G. R. Committee (Ed.), (pp. 49): Society of Petroleum Engineers.
  44. [44]  Sverdrup, H., Svensson, M.G.E. (2002). Defining sustainability. In H. Sverdrup, Stjernquist, I. (Ed.), Developing Principles and Models for Sustainable Forestry in Sweden (pp. 21-32). Dordecht: Kluwer Academic.
  45. [45]  Thuy, P. T., Campbell, B. M., & Garnett, S. (2009). Lessons for pro-poor payments for environmental services: An analysis of projects in Vietnam. The Asia Pacific Journal of Public Administration, 31(2), 117 - 133.
  46. [46]  Tian, H., Melillo, J. M., Kicklighter, D. W., McGuire, A. D., III, J. H., III, B. M., & Vörösmarty, C. J. (2000). Climatic and biotic controls on annual carbon storage in Amazonian ecosystems. Global Ecology & Biogeography, 9, 315-335.
  47. [47]  Tilley, D. R., & Brown, M. T. (2006). Dynamic emergy accounting for assessing the environmental benefits of subtropical wetland stormwater management. Ecological Modelling, 192, 327-361.
  48. [48]  Tilley, D.R., 2014a. Exploration of Odum's Dynamic Emergy Accounting for Suggested Refinements. Ecological Modelling,279, 36- 44 DOI:10.1016/j.ecolmodel.2014.01.031
  49. [49]  Tilley, D.R., 2014b. Transformity dynamics related to maximum power for improved emergy yield estimations. Ecological Modelling http://dx.doi.org/10.1016/j.ecolmodel.2014.10.035
  50. [50]  U.S. Library of Congress. (1989). Bolivia: A Country Study. Retrieved 09/17/2014, 2014, from http://countrystudies.us/bolivia/- 26.htm
  51. [51]  United Nations. (2007). World population's prospects: The 2006 revision. Population database. Retrieved 11/2007 http://esa.un.- org/unpp/
  52. [52]  United Nations Development Programme. (2011). United Nations Development Programme. Country: BOLIVIA. In E. F. Services (Ed.), (pp. 65): UNDP.
  53. [53]  University of Oregon. (2004). Global climate animations. Retrieved 8/11, 2007, from http://geography.uoregon.edu/envchange/- clim_animations/#Global%20Energy%20Balance
  54. [54]  Vanclay, J. K., Prabhu, R., Muetzelfeldt, R., & Haggith, M. (2003). A model to help people to realize sustainable forestry futures. Annals of Tropical Research, 25(2), 53-64.
  55. [55]  Westoby, J. C. (1962). The role of forest industries in the attack on economic underdevelopment. Unasylva, 16(4), 168-201.
  56. [56]  Westoby, J. C. (1987). The purpose of the forests: Follies of development. Oxford: Basil.
  57. [57]  World Bank. (2004). Environment at a glance 2004 Bolivia. Retrieved 08/06, 2006, from http://siteresources.worldbank.org/- INTEEI/Data/20784481/Bolivia.pdf
  58. [58]  World Bank. (2006). Bolivia at a glance. Retrieved 10/2007 http://devdata.worldbank.org/AAG/bol_aag.pdf
  59. [59]  Worldbank. (2004). Environment at a glance 2004 Bolivia. Retrieved 08/06, 2006, from http://siteresources.worldbank.org/- INTEEI/Data/20784481/Bolivia.pdf
  60. [60]  YPFB. (2005). Yacimientos Petrolíferos Fiscales Bolivianos - Reservas nacionales de gas natural. Retrieved 4/8, 2007, from http://www.ypfb.gov.bo/informe_reservas/reservas_2005/P1P2P3-Gas.htm
  61. [61]  Zavala, M. A., Oria, J.A. (1995). Preserving biological diversity in managed forests: a meeting point for ecology and forestry. Landscape and Urban Planning, 31(1), 363-378.