Skip Navigation Links
Journal of Environmental Accounting and Management
Dmitry Kovalevsky (editor), Jiazhong Zhang(editor)
Dmitry Kovalevsky (editor)

Climate Service Center Germany (GERICS), Helmholtz-Zentrum Hereon, Fischertwiete 1, 20095 Hamburg, Germany

Fax: +49 (0) 40 226338163 Email:

Jiazhong Zhang (editor)

School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi Province 710049, China

Fax: +86 29 82668723 Email:

Performance and Environmental Sustainability of Cash Crop Production in Pampas Region, Argentina

Journal of Environmental Accounting and Management 2(3) (2014) 229--256 | DOI:10.5890/JEAM.2014.09.004

Gloria C. Rótolo$^{1}$, Sergio Montico$^{2}$, Charles A. Francis$^{3}$,$^{4}$, Sergio Ulgiati$^{5}$

$^{1}$ Oliveros Agricultural Experiment Station- National Institute of Agricultural Technology-Ruta 11 km 353, 2206 Oliveros, Argentina

$^{2}$ Department of Land Science and Technology, Faculty of Agricultural Sciences, University of Rosario-Campo Experimental Villarino, CC Nº 14, 2123 Zavalla, Argentina

$^{3}$ Department of Plant and Environmental Science, Norwegian University of Life Sciences - P.O.Box 5003, N-1432 Aas, Norway

$^{4}$ Department of Agronomy and Horticulture, University of Nebraska-Lincoln - 1400 R Street, NE 68588 Lincoln, USA

$^{5}$ Department of Sciences and Technologies, Parthenope University, Centro Direzionale, 80143 Naples, Italy

Download Full Text PDF



The Pampas region contributes 80% of the total national production of soya, wheat and maize in Argentina, characterized by large grain exports and internal consumption. Today the area allocated to these crops is driven by short-term economic opportunities, creating a tension between people with vested economic interests and those more concerned about the benefits provided by preserving natural capital and ecosystem services. The objectives of this study were toanalyze resource use, environmental impact, and sustainability of annual crop production in the northern Pampas regions and promote discussion of management strategies and production goals. SUMMA (Sustainability Multimethod Multiscale Assessment), an approach that integrates material demand, energy use, emergy and emissions within a life cycle assessment framework, provides indicators of resource depletion, environmental impact and performance of agricultural systems. Results show a more than doubled water demand per hectare for soy and three times higher for maize and wheat in 2009 compared to 1986, while abiotic material demand per ha decreased down to 10% of the reference year values. On a per gram basis, 2-5 g water were needed in 2009 per gram of product dry matter, with higher demand for wheat and lower for maize. Energy demand decreased by about 60% for soy on per hectare basis, while increased for maize and wheat. About 460 kg CO2 equiv/ha and 3.2 kg SO2equiv/ha were released in 2009 by soybean and up to three times more by maize and wheat, translating into 0.1-0.3 g CO2 equiv/g d.m. of product (with maize performing better and wheat worse). Finally, emergy indicators show an unbalance between use of resources that are free renewable and locally available and resources that are nonrenewable and purchased from outside the system. This unbalance cannot be disregarded, being a key aspect of sustainability.


This study is part of a PhD program at INTA-University of Rosario (Argentina), supported by Parthenope University of Napoli (Italy) and financed by INTA and University of Nebraska-Lincoln (USA). The Authors gratefully acknowledge Ing. Agr. Jorge. Mintegueaga and several consultants for the invaluable support and information provided. The opinions expressed in this paper are full responsibility of the authors.


  1. [1]  Agromercado. (----), Agriculture Monthly Journal - I.S.S.N.:1515-223x
  2. [2]  Albuquerque, M., dos Santos, R., Lima, L., Melo Filho, P., Nogueira, R. and Camara, C., Ramos, A. (2011), Allelopathy, an alternative tool to improve cropping systems. A review, Agronomy for Sustainable Development, 31:379 -395.
  3. [3]  Alexandratos, K. and Bruisma, J. (2012), World agriculture towards, 2030/2050.The 2013 revision. FAO-ESA Working paper No 12- 03, 160 pp.
  4. [4]  Alvarez, R. (2006), Materia Orgánica. Valor agronómico y dinámica en suelos pampeanos, [Organic mtter. Agronomic value and dynamic in Pampa's soils]. Facultad de Agronomía -Universidad de Buenos Aires, 206pp.
  5. [5]  Argentrigo. (2012), Comercialización de trigo 2012, [Wheat 2012 commercialization]. Globaltecnos S.A. Available at: Last retrieved December, 2013.
  6. [6]  Bargigli S. (2002), Analisi del ciclo di vita e valutazione di impatto ambientale della produzione ed uso di idrogeno combustibile. Tesi di Dottorato (Ph.D. Thesis), University of Siena.
  7. [7]  Bargigli, S. and Ulgiati, S. (2003), Emergy and life-cycle assessment of steel production. In: Brown et al., (eds). Emergy Synthesis 2. Theory and Applications of Emergy Methodology.Proceedings of the Second Biennial Emergy Conference. Center for Environmental Policy. University of Florida. Gainsville. FL. USA.
  8. [8]  Barker, D. (2007), The rise and predictable fall of globalized industrial agriculture. The International forum on Globalization. San Francisco, Ca., 68 pp.
  9. [9]  Barsky, O. and Gelman, J. (2009), Historia del agro argentino. Desde la conquista hasta comienzos del siglo XXI, [History of Argentine agriculture. Since the conquest until the early XXI century]. Ed. Sudamericana, 3°ed. 579 pp.
  10. [10]  Bertholdsson, N. (2010), Breeding spring wheat for improved allelopathic potential, Weed Research, 50(1): 49-57.
  11. [11]  Bhadoria, P. (2011), Allelopathy: a natural way towards weed management, American Journal of Experimental Agriculture, 1(1): 7-20.
  12. [12]  Bilenca, D., Codesido, C., González Fischer, C., Pérez Carush, L., Zufiaurre, E. and Abba, A. (2012). Impactos de la transformación agropecuaria sobre la biodiversidad en la provincia de Buenos Aires, [Impacts of agricultural transformation on biodiversity in the province of Buenos Aires, Argentina], Revista del Museo Argentino de Ciencias Naturales, n.s. 14(2): 189-198.
  13. [13]  Biondi, P., Panar, V. and Pellizi, G. (eds), (1989), Le richieste di energia del sistema agricolo Italiano, ENEA-CNR-PFE, LB-20.
  14. [14]  Bonin, C. and Lal, R. (2012), Chapter one- Agronomic and ecological implications of biofuels, Advances in Agronomy, 117: 1-50.
  15. [15]  Boustead, I. and Hancock, G.F. (1979), Handbook of industrial energy analysis, John Wiley & Sons, New York, 422 pages.
  16. [16]  Brown M.T. and Herendeen R.A. (1996), Embodied energy analysis and emergy analysis: a comparative view, Ecological Economics, 19: 219-235.
  17. [17]  Brown, M.T. and Ulgiati. S. (2004), Emergy analysis and environmental accounting, Encyclopedia of Energy, 2: 329-354.
  18. [18]  Brown, M.T., Protano, G. and Ulgiati, S. (2011), Assessing geobiosphere work of generating global reserves of coal, crude oil, and natural gas, Ecological Modelling, 222: 879-887.
  19. [19]  Brown, M.T., Green, P., Gonzalez, A. and Venegas, J. (1992), Emergy analysis perspectives, public policy option, and development guidelines for the Coastal Zone of Nayarit, México. Emergy analysis and public policy options. Center for Wetlands and Water Resources.University of Florida. Gainesville. FL. USA.
  20. [20]  Buenfil, A. (2001), Emergy evaluation of water. Ph.D. Thesis. University of Florida. Gainesville. FL. USA.
  21. [21]  Buonocore E., Franzese P.P. and Ulgiati S. (2012), Assessing the environmental performance and sustainability of bioenergy production in Sweden: a life cycle assessment perspective. Energy, 37: 69-78.
  22. [22]  Buranakarn, V. (1998), Evaluation of recycling and reuse of building materials using the emergy analysis method. Ph.D. Thesis. University of Florida. Gainesville. FL. USA.
  23. [23]  Cairns J. (2004), Sustainability and specialization. Ethics in science and environmental politics (ESEP) 33-38.
  24. [24]  Cereal Knowledge Bank, (2007), Crop residue management. Available at: . Last retrieved March 2014.
  25. [25]  Ciampini, I. and García, F. (2007), Requerimientos nutricionales. Absorción y extracción de macronutrientes y nutrientes secundarios, [Nutritional requeriments. Absortion and extraction of macro and secondary nutrient]. IPNI Archivo Agronómico 11:13-16.
  26. [26]  Clark, A. (2007), Winter wheat. In: Clark, A. (Ed), Managing cover crops profitability (3rded), Sustainable agriculture network. Beltsville, MD.
  27. [27]  Cleveland, C., Costanza, R., Hall, C. and Kaufmann, R. (1984), Energy and the U.S. economy: a biophysical perspective, Science, 225(4665): 890-897.
  28. [28]  Codesido, M., González Fischer, C. and Bilenca, D. (2011), Distributional changes of land bird species in agroecosystems of central Argentina. The Condor 113(2):266-273.
  29. [29]  Costanza, R. (1980), Embodied Energy and Economic Valuation, Science, New Series, 210(4475): 1219-1224.
  30. [30]  Costanza, R., d'Arge R., de Groot, R., Farber, S., Grasso, M., Hannon, B., Limburg, K., Ñame, S., O'Neil, R.V., Paruelo, J., Raskin, R.G., Sutton, P. and van den Belt, M. (1997), The value of the world's ecosystem services and natural capital, Nature, 387: 253- 260.
  31. [31]  Costanza, R., de Groot, R., Sutton, P., van den Ploeg, S., Anderson, S., Kubiszewski, I., Farber, S. and Turner, R. (2014), Changes in the global value of ecosystem services, Global Environmental Change, 26: 152-158.
  32. [32]  Cruzate, G. and Casas, R. (2012), Extracción y balance de nutrientes en los suelos agrícolas de la Argentina, IAH, 6: 7-14.
  33. [33]  da Silva, V., van der Werf, H., Spies, A. and Soares, S. (2010), Variability in environmental impacts of Brazilian soybean according to crop production and transport scenarios, Journal of Environmental Management, 91:1831-1839.
  34. [34]  Daily, G.C. (1997), Nature's Services: societal dependence on natural ecosystems. Island Press. 392 pp.
  35. [35]  de Groot, R., Wilson, M. and Boumans, R. (2002), A typology for the classification, description and valuation of ecosystem functions, goods and services, Ecological Economics, 41: 393-408.
  36. [36]  deVries, S., van de Ven, G., van Ittersum, M.and Giller K. (2010), Resource use efficiency and environmental performance of nine major biofuel crops, processed by first-generation conversion techniques, Biomass Bioenerg, 34(5): 588-601.
  37. [37]  Demirbas, A. (2009), Political, economic and environmental impacts of biofuels. A review, Applied Energy, 86(supplement 1): S108- S117.
  38. [38]  Ewin, B., Moore, D., Goldfinger, S., Oursler, A., Reed, A. and Wackenagel, M. (2010), Ecological footprint atlas 2010. Oakland: Global Footprint Network, 113 pp.
  39. [39]  FAO, (2009), Como alimentar al mundo en el 2050, [How to feed the world 2050]. High level expert forum. Available at Last retrieved: February 2014.
  40. [40]  FAOSTAT, (----), Food and agriculture organization of the United Nations. Statistics. Available at: Last retrieved May 2014.
  41. [41]  Felten, D., Froba, N., Fries, J. and Emmerling, C. (2013), Energy balances and greenhouse gas-mitigation potentials of bioenergy cropping systems (Miscanthus, rapeseed, and maize) based on farming conditions in Western Germany, Renewable Energy, 55: 160-174.
  42. [42]  Ferreyra, M.C. (2001), Emergy Perspectives on the Argentine Economy and food Production systems of the Rolling pampas during the Twentieth Century. A thesis presented to the Graduate School of the University of Florida for the Degree of Master of Science.
  43. [43]  Frank, F. (2014), Producción Primaria [Primary Production]. En (Viglizzo, E. (Ed), La huella de carbono en la agroindustria [The carbon footprint in the agroindustry]. Ediciones INTA, 87 pp.
  44. [44]  Frank, F. and Viglizzo, E. (2010), Balances de carbono, nitrógeno y fósforo, [Carbon, nitrogen and phosphorus balances]. In:Viglizzo y Jobbágy (Eds.), Expansión de la frontera agropecuaria en Argentina y su impacto ecológico-ambiental [Expansion of agricultural border in Argentina and its eco-environmental impact]. Ediciones INTA. 102 pp.
  45. [45]  Franzese P.P., Cavalett O., Hayha T. and D'Angelo S. (2013), Integrated Environmental Assessment of agricultural and Farming Production Systems in the Toledo River Basin (Brazil), UNESCO, 75pp, ISBN: 978-92-3-001138-3.
  46. [46]  Gajardo, J. (2004), Breve historia de internet, [Brief history of internet]. Universidad de Santiago de Chile. Facultad de Ciencia. Departamento de Física. 12 pp. Available in: Last retrieved February 2014.
  47. [47]  Grassini, P., Eskridge, K. and Cassman, K. (2013), Distinguishing between yield advances and yield plateaus in historical crop production trends, Nature Communications, 4: 2918, 11 pp.
  48. [48]  Green, M.B. (1987), Energy in pesticide manufacture, distribution and use. In: Z.R Helsel (Ed), Energy in Plant Nutrition and Pest Control. Energy in the World Agriculture, 2: 165-177. Elsevier.
  49. [49]  Gupta, A. and Hall, C. (2011), A review of the past and current state of EROI data, Sustainability, 3: 1976-1809.
  50. [50]  Gurian-Sherman, D. (2009), Failure to yield. Evaluating the Performance of Genetically Engineered Crops. Union of Concerned Scientists. 51 pp.
  51. [51]  Haberl, H., Erb, K., Krausmann, F., Gaube, V., Bondeau, A., Plutzar, C., Gingrich, S., Lucht, W. and Fischer-Kowalski, M. (2007), Quantifying and mapping the human appropriation of net primary production in earth's terrestrial ecosystems, PNAS, 104(31): 12942-12947.
  52. [52]  Hall, C. and Cleveland, C. (1981), Petroleum drilling and production in the United States: yield per effort and net energy analysis, Science, 211:576-579.
  53. [53]  Hauggaard-Nielsen, H., Johansen, A., Sustmann Carter, M., Ambus, P. and Steen Jensen, E. (2013), Annual maize and perennial grass-clover strip cropping for increased resource use efficiency and productivity using organic farming practice as a model, European Journal of Agronomy, 47: 55-64.
  54. [54]  Helsel, Z. (1992), Energy and alternatives for fertilizer and pesticide use. In: Stout B.A. (Ed), Energy in World Agriculture 6: 177-201.
  55. [55]  Herendeen, R. (1998), Ecological numeracy: Quantitative analysis of environmental issues. John Wiley, NY, 331 pp
  56. [56]  Hilbert, J., Sbarra, R. and Lopez Amorós, M. (2012), Producción de biodiesel a partir de aceite de soja, [Biodiesel production from soybean oil]. Ediciones INTA, 152 pp
  57. [57]  HLPE, (2012), Food security and climate change. Committee on Food Security, Rome, Italy.102 pp.
  58. [58]  IERAL - Instituto de Estudios sobre la Realidad Argentina, [Institute for the Study of Argentina's Reality], (2011a), Una Argentina competitiva, productiva y federal. Cadena de la soja y sus productos derivados, [A competitive, productive and federal Argentina. Chain of soybeans and sub-products]. Documento de trabajo, año 17- Edición 108, 45 pp.
  59. [59]  IERAL - Instituto de Estudios sobre la Realidad Argentina, [Institute for the Study of Argentina's Reality], (2011b), Una Argentina competitiva, productiva y federal. Cadena del maíz y sus productos derivados, [A competitive, productive and federal Argentina. Chain of maize and sub-products]. Documento de trabajo, año 17- Edición 99, 49 pp.
  60. [60]  INPOFOS, (2002), Requerimientos nutricionales de los cultivos, [Crops nutritional requirements]. Archivo Agronómico No 3. IPNI (International Plant Nutrition Institute), Available at: . Last retrieved May 2014.
  61. [61]  Jaggard, K., Qi, A. and Ober, E. (2010), Possible changes to arable crop yields by 2050, Philosophical Transactions of The Royal Society B, 365: 2835-2851.
  62. [62]  Jones, P. and Thornton, P. (2003), The potential impacts of climate change on maize production in Africa and Latin America in 2055, Global Environmental Change, 13: 51-59.
  63. [63]  Kim, S., Dale, B. and Jenkins, R. (2009), Lyfe cycle assessment of corn grain and corn stover in the United States, The International Journal of Life cycle Assessment, 14:160-174.
  64. [64]  Lettenmeier, M., Rohn, H., Liedtke, C. and Schmidt-Bleek, F. (2009), Resource productivity in 7 steps. How to develop ecoinnovative products and services and improve their material footprint. Wuppertal Institute for Climate, Environment and Energy. Wuppertal Spezial, 41, 60 pp.
  65. [65]  Lewis, J. P., Pire, E., Barberis, I. and Prado, D. (2006), Los bosques del Espinal Periestépico en las proximidades de la localidad de Coronda, provincia de Santa Fe (Argentina), [Forest of Espinal Periestépico in the vicinity of Coronda town, Santa Fe (Argentina)]. Secretaría de Investigaciones - Fac. Cs. Ag. - Univ. Nac. de Rosario. Revista de Investigaciones No X - ISSN No 1515- 9116.
  66. [66]  Lopez-Ridaura, S., Masera, O. and Astier, M. (2002), Evaluating the sustainability of complex socio-environmental systems. The MESMIS framework, Ecological Indicators, 35: 1-14.
  67. [67]  Ma, Y. (2005), Allelopathic studies of common wheat (Triticum aestivum L.), Weed Biology and Management, 5(3): 93-104.
  68. [68]  Magrin, G., Travasso, M., López, G., Rodríguez, G. and Lloveras, A. (2007), Vulnerabilidad de la producción agrícola en la región pampeana Argentina. Informe final 2o, [Agricultural production vulnerability in the Pampas region of Argentina. Final report 2]. Comunicación Nacional sobre Cambio Climático. Componente B3. 84 pp.
  69. [69]  Manuel-Navarret, D., Gallopín, G., Blanco, M., Díaz-Zorita, D., Ferraro, H., Laterra, P., Morello, J., Murmis, M.R., Pengue, W., Piñeiro, M., Podestá, G., Satorre, E., Torrent, M., Torres, F., Viglizzo, E., Caputo, M. and Celis, A. (2005), Análisis sistémico de la agriculturización en la pampa húmeda argentina y sus consecuencias en regiones extrapampeanas: sostenibilidad, brechas de conocimiento e integración de políticas [Systemic analysis of argentinean humid pampas agriculturization and its consequences in extra pampean regions: sustainability, knowledge gaps and policy integration]. ONU-CEPAL. División de Desarrollo Sostenible y Asentamientos Humanos. Serie Medio Ambiente y Desarrollo No 118, 65 pp.
  70. [70]  Marelli, H. J. (1998), La siembra directa como práctica conservacionista, [No-till as conservation tillage practice]. In:Panigatti et al (Eds), Siembra Directa. INTA. Ediciones Hemisferio Sur. 127-139.
  71. [71]  Márgenes Agropecuarios, (----), Agriculture Monthly Journal - Propiedad intellectual No 5108854.
  72. [72]  Martinez-Dougnac, G. (2004), Apuntes acerca de la historia de la soja en la Argentina. Elementos para delinear experiencias comparadas, [Notes on the history of soy in Argentina. Elements for outlining comparative experiences].Documentos del CIEA N~2, segunda parte. Facultad de Ciencias Económicas, Buenos Aires. 13 pp.
  73. [73]  MEA, (2005), Millenium Ecosystem Assessment. Ecosystems and Human Well-being. Synthesis. Island Press, Washington DC. 155 pp
  74. [74]  Meehl, G. and Stocker, T. (2007), Global climate projections. In: Solomon, S. et al. (Eds), Climate change 2007: the physical science basis. Contribution of working group I to the IV Assessment Report of the IPCC. Cambridge University Press, ch. 10, 996 pp.
  75. [75]  Metz, B., Davidson, O., Bosch, P., Dave, R. and Meyer, L., (2007), Mitigación del Cambio Climático. Informe del Grupo de Trabajo III, IV Informe de Evaluación del Panel Intergubernamental sobre Cambio Climático, [Mitigation of Climate Change. Report of Working Group III, IV Assessment Report of the IPCC] -UNEP -Cambridge University Press, 863 pp.
  76. [76]  Michelena, R.,Irurtia, C.,Vavruska, F.,Mon, R. and Pittaluga, A. (1989), Degradación de suelos en el norte de la región pampeana [Land degradation in northern Pampas]. INTA, Publicación Técnica No 6,143 pp.
  77. [77]  Milne, G. and Reardon, C. (2013), Australia's common materials guide of environmental sustainable homes - Chapter 5:205 - 530 pp. Avilable at: Last retrieved on May 2014.
  78. [78]  Milo Vaccaro, M. (2009), Articulaciones y estrategias institucionales en relación con el desarrollo local. El caso de una comunidad agroindustrial de la región pampeana Argentina [Institutional linkages and strategies in relation to local development. The case of an agribusiness community of Argentinean pampas]. Tesis Doctoral. Universidad de Córdoba. Españ?a.
  79. [79]  Moedinger, F. (2005), Sustainable clay brick production, a case study. Sustainable Building Conference. Tokyo, Japan, 27-29 September. Available at: - . Last retrieved March 2014.
  80. [80]  Montico, S. (2009), Bioenergy production capacity in the Province of Santa Fe, Argentina, Ciencia e Investigación Agraria, 36(3): 465-474.
  81. [81]  Montico, S. and Di Leo, N. (2008), Cambio de la sostenibilidad biofísica en cuencas hidrográficas: tres décadas de reemplazo de pastizales naturales por agricultura, [Changing the biophysical sustainability in water sheds: three decades of replacing natural grassland agricultura]. Cuadernos del CURIHAM, 13: 1-7.
  82. [82]  Muñoz, M., Mamani, M., Fournier, H. and Borzotta, E. (1995), Geothermal resources in southwestern South America (Argentina, Chile), World Geothermal Congress. International Geothermal Association, page 1157-1159.
  83. [83]  Naveh, Z., Liberman, A., Sarmiento, F., Ghersa C. and León, R. (2001), Ecología de Paisajes [Landscape Ecology]. Ed. Facultad de Agronomía- Universidad de Bs As. 571 pp.
  84. [84]  Nemecek, T., Huguenin-Elie, O., Dubois, D., Gaillard, G., Schaller, B. and Chervet, A. (2011), Life cycle assessment of Swiss farming systems: II. Extensive and intensive production, Agricultural Systems, 104: 233-245.
  85. [85]  Oborn, I., Magnusson, U., Bengtsson, J., Vrede, K., Fahlbeck, E., Jensen, E., Westin, C., Jansson, T., Hedenus, F., Schulz, H., Stenstrom, M., Jansson, B. and Rydhmer, L. (2011), Five scenarios for 2050 - Conditions for agriculture and land use. Uppsala, Sweddish University of Agricultural Sciences, 36 pp.
  86. [86]  Odum, E.P. (1972), Ecología, [Ecology] (3 ed), Interamericana. 639 pp.
  87. [87]  Odum, H.T. (1983), Systems ecology: an introduction. John Wiley & Sons. pp 644.
  88. [88]  Odum, H.T. (1996), Environmental Accounting. Emergy and Environmental Decision Making. John Wiley & Sons, Inc. pp 369.
  89. [89]  Odum, H.T. and Odum, E.C. (1983), Energy analysis overview of nations. International Institute of Applied Systems Analysis. Luxemburg. Austria.
  90. [90]  Odum, H.T. and Odum, E.C. (2001), A Prosperous Way Down. Principles and Policies. University Press of Colorado. 326 pp.
  91. [91]  Ouellette, J. and Wood, W. (1998), Habit and Intention in Everyday Life: The Multiple Processes by Which Past Behavior Predicts Future Behavior, Psychological Bulletin, 124(1): 54-74.
  92. [92]  Panichelli, L. (2006), Análisis de Ciclo de Vida (ACV) de la producción de biodiesel (B100) en Argentina, [LCA of biodiesel (B100) production in Argentina]. Escuela para Graduados Alberto Soriano, Facultad de Agronomía, Universidad Nacional de Buenos Aires. Trabajo Final para la Especialización en Gestión Ambiental de Sistemas Agroalimentarios.
  93. [93]  Panichelli, L., Dauriat, A. and Gnansounou, E. (2009), Life cycle of soybean-based biodiesel in Argentina for export, The International Journal of Life Cycle Assessment, 14(2): 144-159.
  94. [94]  PEA2, (2012), Plan Estratégico Agroalimentario y Agroindustrial Participativo y Federal 2010-2020, [Participatory and Federal Agrifood and Agrbusiness Strategic Plan 2010-2020]. Ministerio de Agricultura, Ganadería y Pesca -Presidencia de la Nación-161 pp. Available at: %20Argentina%20Lider%20Agroalimentario.PDF. Last retrieved on May 2014.
  95. [95]  Pelletier, N., Arsenault, N. and Tyedmers, P. (2008), Scenario Modeling Potential Eco-Efficiency Gains from a Transition to Organic Agriculture: Life Cycle Perspectives on Canadian Canola, Corn, Soy, and Wheat Production, Environmental Management, 42: 989-1001.
  96. [96]  Pieragostini, C., Aguirre, P. and Mussati, M. (2014), Life cycle assessment of corn-based ethanol production in Argentina, Science of Total Environment, 472: 212-225.
  97. [97]  Pimentel, D. (1980), Handbook of energy utilization in agriculture. CRC Press, Inc. Boca Raton, Flan 475 pp.
  98. [98]  Ponton, R. (2008), La importancia de la soja para la Argentina [The importance of soybean for Argentina]. In: Bolsa de Comercio de Córdoba. Balance de la economía Argentina. Globalización, federalismo y desarrollo, 22-1:22-3.
  99. [99]  Pradham, A., Shrestha, D., McAloon, A., Yee, W., Haas, M., Duffield, J. and Shapouri, H. (2009), Energy life cycle assessment of soybean biodiesel. USDA Agricultural Economic Report 845, 31 pp.
  100. [100]  Preda, G. and Mariani, S. (2002), Permanencia de pequeños productores en las pedanías Espinillos y Cruz Alta de la Provincia de Córdoba, [Permanence of small producers in Espinillos and Cruz Alta districts of the Province of Córdoba]. EEA Marcos Juarez. INTA, 15 pp.
  101. [101]  Rabinovich, J. and Torres, F. (2004), Caracterización de los síndromes de sostenibilidad del desarrollo. El caso de Argentina [Characterization of the syndromes of sustainable development. The case of Argentina]. ONU_CAPAL. Proyecto ※Evaluación de la sos tenibilidad en América Latina y el Caribe (ESALC), División Desarrollo sostenible y Asentamientos Humanos. Serie Seminarios y Conferencias No 38, 97 pp.
  102. [102]  Rahmstorf, S., Foster, G. and Cazenave, A. (2012), Comparing climate projections to observations up to 2011. Environmental Research Letters 7- 044035, 6 pp.
  103. [103]  Raupach, M., McMichael, A., Finnigan, J., Manderson, L. and Walker, B. (2012), Negotiating our future: Living scenarios for Australia to 2050. Australian Academy of Science, vol 1, 223 pp. ISBN: 978 0 85847 340 9.
  104. [104]  Rees, W. (2004), The eco-footprint of agriculture: a far-from-(thermodynamic)-equilibrium interpretation. In: Eaglesham, et al (Eds), Agricultural Biotechnology: finding common international goals. Natural Agricultural Biotechnology Council. NABC Report 16. 324 pp.
  105. [105]  Reis, E., Baruffi, D., Remor, L. and Zanatta, M. (2011), Decomposition of corn and soybean residues under field conditions and their role as inocumlum source, Summa Phytopathol, Botucatu, 37(1): 65-67.
  106. [106]  Rótolo, G., Francis, C., Craviotto, R., Viglia, S., Pereyra, A. and Ulgiati, S. (2014), Time to re-think the GMO revolution in agriculture, Ecological Informatics, DOI: 10.1016/j.ecoinf.2014.05.002.
  107. [107]  Rótolo, G., Rydberg, T., Lieblein, G., Francis, C., 2007. Emergy evaluation of grazing cattle in Argentina's Pampas, Agriculture, Ecosystems and Environment, 119: 383-395.
  108. [108]  Rótolo, G.C., Francis, C., Craviotto, R.M. and Ulgiati, S. (2014), Environmental Assessment of corn Production Alternatives: Traditional, intensive and genetically Modified Cropping patterns, Ecological Indicators, (submitted).
  109. [109]  Sage, R. and Zhu, X. (2011), Exploiting the engine of C4 photosynthesis, Journal of Experimental Botany, 62(9): 2989-3000.
  110. [110]  Schmidt-Bleek, F. (1993), MIPS The fossil makers. Factor 10 Institute. ISBN 3-7643-2959-9. Available at: http://www.factor10- Last retrieved on May 2014.
  111. [111]  SIIA, (----), Sistema Integrado de Información Agropecuaria [Integrated system of agricultural information]. Available at: . Last retrieved on February 2014.
  112. [112]  Suttie, J.M. (2000), Hay and straw conservation for small-scale farming and pastoral conditions. Chapter IX, dry crop residues. FAO Plant Production and Protection Series 29. ISBN: 92-5-104458-9.
  113. [113]  Tarkalson, D., Brown, B., Kok, H. and Bjorneberg, D. (2009), Impact of removing straw from wheat and barley fields: a literature review, IPNI Better Crops, 93(3): 17-19.
  114. [114]  Ulgiati, S. (2001), A comprehensive energy and economic assessment of bio-fuels: When “green” is not enough, Critical Reviews in Plant Science, 20(1): 71-106.
  115. [115]  Ulgiati, S. and Brown, M.T. (2014), Labor and Services as Information Carriers in Emergy-LCA Accounting, Journal of Environmental Accounting and Management, 2(2): 163-170.
  116. [116]  Ulgiati, S., Raugei, M. and Bargigli, S. (2006), Overcoming the inadequacy of single-criterion approaches to life cycle assessment, Ecological Modelling, 190: 432-442.
  117. [117]  Ulgiati S., Ascione M., Bargigli S., Cherubini F., Franzese P.P., Raugei M., Viglia S. and Zucaro A. (2011), Material, energy and environmental performance of technological and social systems under a Life Cycle Assessment perspective, Ecological Modelling, 222: 176-189.
  118. [118]  Vazquez, P. and Zulaica, L. (2013), Intensificación agrícola y pérdida de servicios ambientales en el partido de Azul (provincia de Buenos Aires) entre 2002-2011, [Agricultural intensification and loss of environmental services in the Azul county, Province of Buenos Aires (Argentina) between 2002-2011], The Sociedade & Natureza, Uberlandia, 25(3): 543-556.
  119. [119]  Viglizzo E.F., Frank F., Bernardos J., Buschiazzo D.E. and Cabo S. (2006), A rapid method for assessing the environmental performance of commercial farms in the pampas of Argentina, Environmental Monitoring and Assessment. 117: 109-134.
  120. [120]  Viglizzo, E., Pordomingo, A., Castro, M.and Lertora, F. (2003), Environmental assessment of agriculture at a regional scale in the pampas of Argentina, Environmental Monitoring and Assessment, 87: 169-195.
  121. [121]  Vlek, C. and Steg, L. (2007), Human behavior and environmental sustainability: problems, driving forces and research topics, Journal of Social issues, 63(1): 1-19.
  122. [122]  Wackernagel, M. and Rees, W.E. (1996), Our Ecological Footprint. Reducing Human Impact on the Earth, Environment and Urbanization, 8(2): 216-216.
  123. [123]  Weiner, J., Griepentrog, H. and Kristensen,L. (2001), Suppression of weeds by spring wheat (Triticum aestivum) increases with crop density and spatial uniformity, Journal of Applied Ecology, 38:784-790.
  124. [124]  Weir, E. (2002), Pérdida de suelo y agua en parcelas de escurrimiento, [Soil and water loss in runoff plots]. INTA Marcos Juárez - Informe de trabajo.
  125. [125]  Zabala, M.E., Marelli, H. and Sanabria, J. (2003), Caracterización del potencial erosivo de suelos del centro sudeste de la provincia de Córdoba [Characterization of soil erosion potential in the southeastern center of Córdoba province]. INTA. Información para Extensión No 82. 21 p.