Skip Navigation Links
Journal of Environmental Accounting and Management
António Mendes Lopes (editor), Jiazhong Zhang(editor)
António Mendes Lopes (editor)

University of Porto, Portugal


Jiazhong Zhang (editor)

School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi Province 710049, China

Fax: +86 29 82668723 Email:

Reconsidering Some of the Earth’s Biophysical Limits to the Long Term Sustainable Development of Humanity

Journal of Environmental Accounting and Management 1(3) (2013) 283--293 | DOI:10.5890/JEAM.2013.08.006

Pëllumb R. Harizaj

Agricultural University of Tirana, Faculty of Agriculture and Environment, Kodër-Kamëz, Tirana, Albania

Download Full Text PDF



Humans’ existence as living organisms depends on some essential natural resources and ecosystem services. On the other side, nature has a certain speed of regenerating its resources required by hu- mans. Therefore, the consumption rate of natural resources by soci- ety should be equal to or slower than the nature’s speed of resource recovery in order to avoid overexploitation or degradation. This requires the quantitative definition of the Earth’s bio-physical limits that are crucial for the existence of human life, and monitoring of these limits by identifying the proper indicators of the Earth’s per- formance. A new economic theory designed according to the knowledge offered by pure and applied science might play a key role in achieving the long term sustainability goals of humanity.


  1. [1]  Meadows, D., Randers, J. and Meadows, D. (2004), Limits to Growth, The 30-Year Update, ISBN: 1-931498-58-X.
  2. [2]  Meadows, D. (2008), Thinking in Systems, ISBN:978-1-60358-055-7.
  3. [3]  Odum, H.T. (2007), Environment, Power and Society for the Twenty-First Century, ISBN: 978-0-231-12886-5.
  4. [4]  Pimentel, D. and Pimentel, M.H. (2008), Food Energy and Society, Third Edition, CRC Press, ISBN: 978-14200-4667-0.
  5. [5]  Daly, H.E. (1996), Beyond Growth, Beacon Press, ISBN: 978-0-8070-4709-5.
  6. [6]  Daily, H.E. and Farley, J. (2011), Ecological Economics, Principles and Applications, ISBN: 978-1-59726-681-9.
  7. [7]  Costanza, R. (2007), Sustainability or Collapse: Lessons from Integrating the History of Humans and the Rest of Nature, pp 3-18, In: Sustainability or Collapse, An Integrated History and Future of People on Earth, Edited by Massachusetts Institute of Technology and Freie Universität Berlin, ISBN: 0-262-03366-6.
  8. [8]  Odum, H.T. (2000), Handbook of Emergy Evaluation, Folio # 1: Introduction and Global Budget, Center for Environmental Policy, Environmental Engineering Sciences, University of Florida, USA.
  9. [9]  Odum, H.T. (1996), Environmental Accounting: Emergy and Environmental Decision Making, ISBN: 0-471-11442-1.
  10. [10]  Harizaj, P. (2011), Can the emergy sustainability index be improved? Ecological Modeling, 222(12), 1913-2036.
  11. [11]  Giannetti, B.F., Almeida, C.M.V.B. and Bonilla, S.H. (2012), Can emergy sustainability index be improved? Complementary insights for extending the vision, Ecological Modeling, 244, 158-161.
  12. [12]  Pimentel, D., Bailey, O., Kim, P., Mullaney, E., Calabrese, J., Walman, L., Nelson, F. and Yao, X. (1999), Will limits of the earth's resources control human numbers? Environment, Development and Sustainability, 1, 19-39.
  13. [13]  Giampietro, M., Bukkens, S.G.F. and Pimentel, D. (1992), Limits to population size: Three scenarios of energy interaction between human society and ecosystems, Population and Environment, 14(2), 109-131.
  14. [14]  Cohen, J.E. (1995), Population growth and earth’s human carrying capacity, Science, 269, 341-345.
  15. [15]  Daily, G.C., Ehrilch, A.H. and Ehrich, P.R. (1993), Optimum human population size, Population & Immigration, 4, 2.
  16. [16]  Smail, K.J. (2002), Confronting a surfeit of people: reducing global human numbers to sustainable levels, Environment, Development and Sustainability, 4, 21-50.
  17. [17]  Eswaran, H., Fred B. and Paul R. (1999), Global land resources & population supporting capacity, American Journal of Alternative Agriculture, 14, 129-136.
  18. [18]  Bennett, E.M., Stephen, R.C. and Nina F.C. (2001), Human impact on erodible phosphorus and eutrophication: A global perspective, BioScience, 51(3), 227-234.
  19. [19]  Oldeman, L.R. (1992), Global Extent of Soil Degradation, Isric Bi-Annual Report, 19-36.
  20. [20]  Pimentel, D., Harvey, C., Resosudarmo, K., Sinclair, K., Kurz, D., McNair, M., Crist, S., Shritz, L., Fitton, L., Saffouri, R. and Blair, R. (1995), Environmental and economic costs of soil erosion and conservation benefits, Science, 267, 24.
  21. [21]  Oldeman, L.R. (1998), Soil Degradation: A Threat to Food Security? International Soil Reference and Information Center, Wageningen, The Netherlands.
  22. [22]  Oldeman, L.R. (2000), Working paper 2000/01- Impact of Soil Degradation: A Global Scenario.
  23. [23]  Brown, L.R. (2012), Full World, Empty plates, the New Geopolitics of Food Scarcity, Publication of the Earth Policy Institute. First edition, ISBN: 978-0-393-34415-8.
  24. [24]  Ward, P. (2006). Out of Thin Air: Dinosaurs, Birds, and Earth’s Ancient Atmosphere, ISBN: 0-309-10061-5.
  25. [25]  Berner, R. (2006), GEOCARBSULF: A combined model for Phanerozoic atmosphere O2 and CO2, Geochimica et Cosmochimica Acta, 70, 653-5664.
  26. [26]  Berner, R.A., VandenBrook, J.M. and Ward, P.D. (2007), Oxygen and evolution, Science, 316, 557-558.
  27. [27]  Hallam, T. (2009), Catastrophes and Lesser Calamities, the Causes of Mass Extinctions, Oxford University Press, ISBN: 978-0-19-280668-0.
  28. [28]  Scripps O2 program:
  29. [29]  Lüthi, D., Le Floch, M., Bereiter, B., Blunier, T., Barnola, J.M., Siegenthaler, U., Raynaud, D., Jouzel, J., Fischer, H., Kawamura, K. and Stocker, T.F. (2008), High-resolution carbon dioxide concentration record 650,000-800,000 years before present, Nature, 453, 379-382.
  30. [30]  NOAA. (2012), (file name: wais2012co2.xls).
  31. [31]  Ruddiman, W.F. (2003), The anthropogenic greenhouse era began thousands of years ago, Climate Change, 61, 261-293.
  32. [32]  Kaplan, J.O., Krumhardt, K.M., Ellis, E.C., Ruddiman, W.F., Lemmen, C. and Goldewijk, K.K. (2011), Holocene carbon emissions as a result of anthropogenic land cover change, The Holocene, 21(5), 775-791.
  33. [33]  Hansen, J., Sato, M., Kharecha, P., Beerling, D., Berner, R., Masson-Delmotte, V., Pagani, M., Raymo, M., Royer, D.L. and Zachos, J.C. (2008), Target atmospheric CO2: Where should humanity aim? The Open Atmospheric Science Journal, 2, 217-231.
  34. [34]  Rockström, J., Steffen, W., Noone, K., Persson, A., Chapin, F.S., Lambin, E.F., Lenton, T.M., Scheffer, M., Folke, C., Schellnhuber, H.J., Nykvist, B., de Wit, C.A., Hughes, T., van der Leeuw, S., Rodhe, H., S?rlin, S., Snyder, P.K., Costanza, R., Svedin, U., Falkenmark, M., Karlberg, L., Corell, R.W., Fabry, V.J., Hansen, J., Walker, B., Liverman, D., Richardson, K., Crutzen, P., Foley, J.A. (2009), A safe operating space for humanity, Nature, 461, 472-475.
  35. [35]  Barnosky, A.D. Hadly, E.A., Bascompte, J., Berlow, E.L., Brown, J.H., Fortelius, M., Getz, W.M., Harte, J., Hastings, A., Marquet, P.A., Martinez, N.D., Mooers, A., Roopnarine, P., Vermeij, G., Williams, J.W., Gillespie, R., Kitzes, J., Marshall, C., Matzke, N., Mindell, D.P., Revilla, E. and Smith, A.B. (2012), Approaching a state shift in Earth's Biosphere, Review, Nature, 486, 7.
  36. [36]  Adams, B., White, A., Lenton, T.M. (2004), An analysis of some diverse approaches to modeling terrestrial net primary productivity, Ecological Modeling, 177, 355-391.
  37. [37]  Cline, W.R. (2007), Global Warming and Agriculture: Impact Estimates by Country,
  38. [38]  Postel, S.L., Daily, G.C., Ehrich, P.R. (1996), Human appropriation of renewable fresh water, Science, 271, 9.
  39. [39]  Mankiw, G.N. (2010), Macroeconomics, Seventh Edition, ISBN-13:978-1-4292-1887-0, 203-211.