Skip Navigation Links
Journal of Environmental Accounting and Management
António Mendes Lopes (editor), Jiazhong Zhang(editor)
António Mendes Lopes (editor)

University of Porto, Portugal


Jiazhong Zhang (editor)

School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi Province 710049, China

Fax: +86 29 82668723 Email:

Thirty-years Assessment of Size-fractionated Particle Mass Concentrations in a Polluted Urban Area and Its Implications for the Regulatory Framework

Journal of Environmental Accounting and Management 1(3) (2013) 259--267 | DOI:10.5890/JEAM.2013.08.004

Marco Casazza$^{1}$, Giorgio Gilli$^{2}$, Angelo Piano$^{1}$, Silvia Alessio$^{1}$

$^{1}$ Dipartimento di Fisica, Università degli Studi di Torino, Via P. Giuria 1, 10125, Torino, Italy

$^{2}$ Dipartimento di Scienze della Sanità Pubblica e Pediatriche, Università degli Studi di Torino, Via Santena 5 BIS, 10126, Torino, Italy

Download Full Text PDF



Among the different atmospheric pollutants, since the late 70s, great attention has been devoted to Particulate Matter (PM). From a 30-year database of size-fractionated PM measurements, we ob- served the positive impact of the gradual introduction of improved air quality regulations. In fact, PM10, PM2.5 and PM1 absolute con- centration levels have been reduced during this period. In particular the mean recorded values are: 63 μg/m3 (PM10), 38 μg/m3 (PM2.5) and 22 μg/m3 (PM1) in year 1980. Recorded mean values were 59 μg/m3 (PM ), 41 μg/m3 (PM ) and 32 μg/m3 (PM ) in year 2000, 10 3 2.5 3 1 3 and finally 45 μg/m (PM10), 34 μg/m (PM2.5) and 29 μg/m (PM1) in year 2011. Nevertheless, major adverse health effects are still recorded. Even if a complete toxicological description of PM im- pact is still in progress and several aspects related to the chemical and mutagenic effects of PM should be investigated in depth, the relative size concentrations are also of paramount importance. In fact, even if the absolute concentrations of the three inhalable PM fractions decreased, relative concentrations of finer fractions have increased in the period 1980-2010. In particular, the relative values of PM2.5 and PM1 are: 61% (PM2.5) and 35% (PM1) in year 1980; 70% (PM2.5) and 54% (PM1) in year 2000; 75% (PM2.5) and 65% (PM1) in year 2011. Results suggest that the introduction of new limitations to sub-micron particles (PM1) emissions is advisable. Possible improvement of air quality management might derive from differentiated local/regional limitations, depending on the charac- teristics of the exposed population and on the local meteorological and geographical characteristics of the sites showing higher aerosol pollution levels.


  1. [1]  World Health Organization Europe. (2006), Air Quality Guidelines—Global Update. World Health Organization: Geneva.
  2. [2]  Chan, C.K. and Yao, X. (2008), Air pollution in mega cities in China, Atmospheric Environment, 42, 1-42.
  3. [3]  Cohen, A.J., Anderson, H.R., Ostro, B., Pandey, K.D., Krzyzanowski, M., Künzli, N., Gutschmidt, K., Pope, A., Romieu, I., Samet, J.M. and Smith, K. (2005), The global burden of disease due to outdoor air pollution, Journal of Toxicology and Environmental Health, Part A, 68, 1301-1307.
  4. [4]  Lall, R., Kendall, M., Ito, K. and Thurston, G.D. (2005), Estimation of historical PM2.5 exposures for health effects assessment, Atmospheric Environment, 38, 5217-5226.
  5. [5]  Maté, T., Guaita, R., Pichiule, M., Linares, C. and Diaz, J. (2010), Short-term effect of fine particulate matter (PM2.5) on daily mortality due to diseases of the circulatory system in Madrid (Spain), Science of the Total Environment, 408, 5750- 5757.
  6. [6]  Hsiao, W.L.W., Mo, Z., Fang, M., Shi, X. and Wang, F. (2000), Cytotoxicity of PM2.5 and PM2.5-10 ambient air pollutants assessed by the MTT and the Comet assays, Mutagenic Research, 471, 45-55.
  7. [7]  Bonazza, A., Sabbioni, C. and Ghedini, N. (2005), Quantitative data on carbon fractions in interpretation of black crusts and soiling on European built heritage, Atmospheric Environment, 39, 2607-2618.
  8. [8]  Ozga, I., Bonazza, A., Lyazidib, S.A., Haddadb, M., Ben-Ncerc, A., Ghedini, N. and Sabbioni, C. (2013), Pollution impact on the ancient ramparts of the Moroccan city Salé, Journal of Cultural Heritage, in press.
  9. [9]  Lohmann, U., Rotstayn, L., Storelvmo, T., Jones, A., Menon, S., Quaas, J., Ekman, A.M.L., Koch, D. and Ruedy, R. (2010), Total aerosol effect: Radiative forcing or radiative flux perturbation? Atmospheric Chemistry and Physics, 10, 3235-3246.
  10. [10]  Ming, Y. and Ramaswamy, V. (2009), Nonlinear climate and hydrological responses to aerosol effects, Journal of Climate, 22, 1329-1339
  11. [11]  Harrison, R.M., Jones, A.M. and Lawrence, R.G. (2004), Major component composition of PM10 and PM2.5 from roadside and urban background sites, Atmospheric Environment, 38, 4531-4538.
  12. [12]  Jimenez, J.L., Canagaratna, M.R., Donahue, N.M., Prevot, A.S.H., Zhang, Q., Kroll, J.H., DeCarlo, P.F., Allan, J.D., Coe, H., Ng, N.L., Aiken, A.C., Docherty, K.S., Ulbrich, I.M., Grieshop, A.P., Robinson, A.L., Duplissy, J., Smith, J.D., Wilson, K.R., Lanz, V.A., Hueglin, C., Sun, Y.L., Tian, J., Laaksonen, A., Raatikainen, T., Rautiainen, J., Vaattovaara, P., Ehn,M., Kulmala, M., Tomlinson, J.M., Collins, D.R., Cubison, M.J., Dunlea, E.J., Huffman, J.A., Onasch, T.B., Alfarra, M.R., Williams, P.I., Bower, K., Kondo, Y., Schneider, J., Drewnick, F., Borrmann, S., Weimer, S., Demerjian, K., Salcedo, D., Cottrell, L., Griffin, R., Takami, A., Miyoshi, T., Hatakeyama, S., Shimono, A., Sun, J.Y., Zhang, Y.M., Dzepina, K., Kimmel, J.R., Sueper, D., Jayne, J.T., Herndon, S.C., Trimborn, A.M., Williams, L.R., Wood, E.C., Middlebrook, A.M., Kolb, C.E., Baltensperger, U. and Worsnop, D.R. (2009), Evolution of organic aerosols in the atmosphere, Science, 326, 1525-1529.
  13. [13]  Bamford, H.A., Bezabeh, D.Z., Schantz, M.M., Wise, S.A. and Baker, J.E. (2003), Determination and comparison of nitrated- polycyclic aromatic hydrocarbons measured in air and diesel particulate reference materials, Chemosphere, 50, 575-587.
  14. [14]  Traversi, D., Schilirò, T., Degan, R., Pignata, C., Alessandria, L. and Gilli, G. (2011), Involvement of nitro-compounds in the mutagenicity of urban Pm2.5 and Pm10 in Turin, Mutation Research, 726: 54-59
  15. [15]  Chiari, M., Del Carmine, P., Garcia Orellana, I., Lucarelli, F., Nava, S. and Paperetti, L. (2006), Hourly elemental composition and source identification of fine and coarse PM10 in an Italian urban area stressed by many industrial activities, Nuclear Instruments and Methods in Physics Research B, 249, 584-587.
  16. [16]  Pey, J., Querol, X. and Alastuey, A. (2010), Discriminating the regional and urban contributions in the North-Western Mediterranean: PM levels and composition, Atmospheric Environment, 44, 1587-1596
  17. [17]  Wallace, J., Corr, D. and Kanaroglou, P. (2010), Topographic and spatial impacts of temperature inversions on air quality using mobile air pollution surveys, Science of the Total Environment, 408, 5086-5096.
  18. [18]  Traversi, D., Alessandria, L., Schilirò, T., Chiadò Piat, S. and Gilli, G. (2010), Meteo-climatic conditions influence the contribution of endotoxins to PM10 in an urban polluted environment, Journal of Environmental Monitoring, 12, 484-490
  19. [19]  Nemery, B., Hoet, P.H.M. and Nemmar, A. (2001), The Meuse valley fog of 1930: An air pollution disaster, The Lancet, 357, 704-708.
  20. [20]  Kelly, K.E., Jaramillo, I.C., Quintero-Nunez, M., Wagner, D.A., Collins, K., Meuzelaar, H.L. and Lighty, J.S. (2010), Lowwind/ high particulate matter episodes in the Calexico/ Mexicali region, Journal of the Air and Waste Management Association, 60, 1476-1486.
  21. [21]  Traversi, D., Degan, R., De Marco, R., Gilli, G., Pignata, C., Ponzio, M., Rava, M., Sessarego, F., Villani, S. and Bono, R. (2008), Mutagenic properties of PM2.5 air pollution in the Padana Plain (Italy) before and in the course of XX Winter Olympic Games of “Torino 2006”, Environment International, 34, 966-970.
  22. [22]  Behera, S.M. and Sharma, M. (2011), Degradation of SO2, NO2 and NH3 leading to Formation of Secondary Inorganic Aerosols: an Environmental Chamber Study, Atmospheric Environment, 45, 4015-4024.
  23. [23]  Ledoux, F., Courcot, L., Courcot, D., Aboukaïs, A. and Puskaric, E. (2006), A summer and winter apportionment of particulate matter at urban and rural areas in northern France, Atmospheric Research, 82, 633-642.
  24. [24]  Leaitch, W.R., Strapp, J.W., G. A. and Isaac, G.A. (1986), Cloud droplet nucleation and cloud scavenging of aerosol sulphate in polluted atmospheres, Tellus, 38B, 328-344.
  25. [25]  Croft, B., Lohmann, U., Martin, R.V., Stier, P., Wurzler, S., Feichter, J., Hoose, C., Heikkil, U., van Donkelaar, A. and Ferrachat, S. (2010), Influences of in-cloud aerosol scavenging parameterizations on aerosol concentrations and wet deposition in ECHAM5-HAM, Atmospheric Chemistry and Physics, 10, 1511-1543.
  26. [26]  Mircea, M., Stefan, S. and Fuzzi, S. (2000), Precipitation scavenging coefficient: influence of measured aerosol and raindrop size distributions, Atmospheric Environment, 34, 5169-5174.
  27. [27]  Chaubey, J.P., Moorthy, K.K., Babu, S.S., Nair, V.S. and Tiwari, A. (2010), Black carbon aerosols over coastal Antarctica and its scavenging by snow during the Southern Hemispheric summer, Journal of Geophysical Research, 115, D10210, doi:10.1029/2009JD013381.
  28. [28]  Chate, D.M., Murugavel, P., Ali, K., Tiwari, S. and Beig, G. (2011), Below-cloud rain scavenging of atmospheric aerosols for aerosol deposition models, Atmospheric Research, 99, 528-536.
  29. [29]  Lu, C., Niu, S., Tang, L., Lv, J., Zhao, L. and Zhu, B. (2010), Chemical composition of fog water in Nanjing area of China and its related fog microphysics, Atmospheric Research, 97, 47-69.
  30. [30]  Li, P., Li, X., Yang, C., Wang, X., Chen, J. and Collett Jr, J.L. (2011), Fog water chemistry in Shanghai, Atmospheric Envi ronment, 45, 4034-4041.
  31. [31]  Juergensmeyer, J.C. (1967), Control of air pollution through the assertion of private rights, Duke Law Journal, 6, 1126- 1155.
  32. [32]  Mc Lean, B.J. (1997), Evolution of marketable permits: the U.S. experience with sulphur dioxide allowance trading, International Journal of Environment and Pollution, 8(1-2), 19-36.
  33. [33]  Kolstad, C.D. (1986), Empirical properties of economic incentives and command-and-control regulations for air pollution control, Land Economics 62(3), 250-268.
  34. [34]  Proost, S. andVan Dender, K. (2001), The welfare impacts of alternative policies to address atmospheric pollution in urban road transport, Regional Science and Urban Economics, 31, 383-411.
  35. [35]  Jaffe, A.B., Newell, R.G. and Stavin, R.N. (2002), Environmental Policy and Technological Change, Environmental and Resource Economics, 22, 41-69.
  36. [36]  Longhetto, A., Pavese, P. and Piano, A. (1975), Comparison among granulometric distributions of Pb and Cd on Urban, Bottom Valley, and Mountain atmospheric Aerosols, Rivista Italiana di Geofisica e scienze affini, 1, 95-96.
  37. [37]  Bacci, P., Longhetto, A., Marcazzan, G., Piano, A., Prodi, F., Sabbioni, C. and Ventura, A. (1983), Aerosol characterization in a Po Valley site, Journal of Aerosol Science, 14(3), 222-225.
  38. [38]  Casazza, M. and Piano, A. (2003), Some remarks on PM2.5, Annals of Geophysics, 46(2), 241-246.
  39. [39]  Stafoggia, M., Samoli, E., Alessandrini, E., Cadum, E., Ostro, B., Berti, G., Faustini, A., Jacquemin, B., Linares, C., Pascal, M., Randi, G., Ranzi, A., Stivanello, E. and Forastiere, F.; the MED-PARTICLES Study Group. (2013), Short-term associations between fine and coarse particulate matter and hospitalizations in Southern Europe: Results from the MEDPARTICLES Project, Environmental Health Perspectives,
  40. [40]  Noll, K.E. and Pilat, M.J. (1971), Size distribution of atmospheric giant particles, Atmospheric Environment, 5, 527-540.
  41. [41]  Morawska, L., Keogh, D.U., Thomas, S.B. and Mengersen, K. (2008), Modality in ambient particle size distributions and its potential as a basis for developing air quality regulation, Atmospheric Environment, 42, 1617-1628.
  42. [42]  Mallone, S., Stafoggia, M., Faustini, A., Gobbi, G.P., Marconi, A. and Forastiere, F. (2011). Saharan dust and associations between particulate matter and daily mortality in Rome, Italy. Environmental Health Perspectives, 119(10), 1409-1414.
  43. [43]  Aitken, R.J., Baldwin, P.E.J., Beaumont, G.C., Kenny, L.C. and Maynard, A.D. (1999), Aerosol inhalability in low air movement environments, Journal of Aerosol Science, 30, 613-626
  44. [44]  Nemet, G.F., Holloway, T. and Meier, P. (2010), Implications of incorporating air-quality co-benefits into climate change policymaking, Environment Research Letters, 5, 1-9.