Skip Navigation Links
Journal of Applied Nonlinear Dynamics
Miguel A. F. Sanjuan (editor), Albert C.J. Luo (editor)
Miguel A. F. Sanjuan (editor)

Department of Physics, Universidad Rey Juan Carlos, 28933 Mostoles, Madrid, Spain

Email: miguel.sanjuan@urjc.es

Albert C.J. Luo (editor)

Department of Mechanical and Industrial Engineering, Southern Illinois University Ed-wardsville, IL 62026-1805, USA

Fax: +1 618 650 2555 Email: aluo@siue.edu


Hopf Bifurcation for the Prey-Predator Rosenzweig-MacArthur Model

Journal of Applied Nonlinear Dynamics 15(2) (2026) 325--334 | DOI:10.5890/JAND.2026.06.005

Jaume Llibre, Leonardo Serantola

$^1$ Departament de Matematiques, Universitat Autonoma de Barcelona, 08193 Bellaterra, Barcelona, Spain

$^2$ Departamento de Matem'{a}tica, Ibilce--UNESP, 15054-000 S~{a}o Jos'{e} do Rio Preto, Brasil

Download Full Text PDF

 

Abstract

This paper studies the bifurcation of limit cycles for a specific predator-prey model called Rosenzweig-MacArthur, that presents persistent oscillations in the amount of individuals of the population from predator group and from the prey group. This model uses a Holling Type II function response. The averaging theory of third order allows to investigate the Hopf bifurcation that exhibits this model, providing an analytical approximation of the bifurcated periodic orbit and its kind of stability.

Acknowledgments

The first author has been partially supported by the Agencia Estatal de Investigaci\'on of Spain grant PID2022-136613NB-100, AGAUR (Generalitat de Catalunya) grant 2021SGR00113, and by the Reial Acad\`emia de Ci\`encies i Arts de Barcelona.

References

  1. [1]  Sambath, M., Balachandran, K., and Surendar, M.S. (2024), Functional responses of prey-predator models in population dynamics: a survey, Journal of Applied Nonlinear Dynamics, 13(1), 83-98.
  2. [2]  Holling, C.S. (1959), The components of predation as revealed by a study of small-mammal predation of the European pine sawfly, The Canadian Entomologist, 91(5), 293-320.
  3. [3]  Shen, C. (2009), Permanence and global attractivity of the food chain system with Holling type IV functional response, Applied Mathematics and Computation, 215, 179-185.
  4. [4]  Rosenzweig, M. and MacArthur, R. (1963), Graphical representation and stability conditions of predator-prey interaction, American Naturalist, 97, 209-223.
  5. [5]  Barraquand, F. (2023), No sensitivity to functional forms in the Rosenzweig-MacArthur model with strong environmental stochasticity, Journal of Theoretical Biology, 572, 111566.
  6. [6]  Hammoum, A., Sari, T., and Yadi, K. (2023), The Rosenzweig-MacArthur graphical criterion for a predator-prey model with variable mortality rate, Qualitative Theory of Dynamical Systems, 22(1), 36.
  7. [7]  Lin, X., Xu, Y., Gao, D., and Fan, G. (2023), Bifurcation and overexploitation in Rosenzweig-MacArthur model, Discrete and Continuous Dynamical Systems Series B, 28(1), 690-706.
  8. [8]  Lin, X., Yang, Y., Xu, Y., and He, M. (2024), Bifurcations and hydra effects in Rosenzweig-MacArthur model, Journal of Applied Analysis and Computation, 14(2), 606-622.
  9. [9]  Lu, M., Xiang, C., Huang, J., and Ruan, S. (2024), Dynamics of the generalized Rosenzweig-MacArthur model in a changing and patchy environment, Physica D, 465, 134197.
  10. [10]  Yang, Y., Xu, Y., Meng, F., and Rong, L. (2024), Global harvesting and stocking dynamics in a modified Rosenzweig-MacArthur model, Qualitative Theory of Dynamical Systems, 23(5), 196.
  11. [11]  Beay, L.K., Suryanto, A., and Darti, I.T. (2023), Hopf bifurcation and stability analysis of the Rosenzweig-MacArthur predator-prey model with stage-structure in prey, Mathematical Biosciences and Engineering, 17(4), 4080-4097.
  12. [12]  Llibre, J., Novaes, D.D., and Teixeira, M.A. (2014), Higher order averaging theory for finding periodic solutions via Brouwer degree, Nonlinearity, 27, 563-583.
  13. [13]  Lloyd, N.G. (1978), Degree Theory, Cambridge University Press, Cambridge.