Skip Navigation Links
Journal of Applied Nonlinear Dynamics
Miguel A. F. Sanjuan (editor), Albert C.J. Luo (editor)
Miguel A. F. Sanjuan (editor)

Department of Physics, Universidad Rey Juan Carlos, 28933 Mostoles, Madrid, Spain

Email: miguel.sanjuan@urjc.es

Albert C.J. Luo (editor)

Department of Mechanical and Industrial Engineering, Southern Illinois University Ed-wardsville, IL 62026-1805, USA

Fax: +1 618 650 2555 Email: aluo@siue.edu


Optical Soliton Perturbation with Dispersive Concatenation Model Having Power– Law of Self–Phase Modulation: Semi–Inverse Variation

Journal of Applied Nonlinear Dynamics 15(1) (2026) 125--131 | DOI:10.5890/JAND.2026.03.008

Russell W. Kohl$^1$, Anjan Biswas$^{2,3,4,5}$, Yakup Yildirim$^{6,7,8}$, Ali Saleh Alshomrani$^3$

$^1$ Department of Mathematics, University of Maryland Eastern Shore, Princess Anne, MD--21853, USA

$^2$ Department of Mathematics and Physics, Grambling State University, Grambling, LA 71245--2715, USA

$^3$ Mathematical Modeling and Applied Computation (MMAC) Research Group, Center of Modern Mathematical Sciences and their Applications (CMMSA), Department of Mathematics, King Abdulaziz University, Jeddah-- 21589, Saudi Arabia

$^4$ Department of Mathematics and Applied Mathematics, Sefako Makgatho Health Sciences University, Medunsa-- 0204, Pretoria, South Africa

$^5$ Department of Applied Sciences, Cross--Border Faculty of Humanities, Economics and Engineering, Dunarea de Jos University of Galati, 111 Domneasca Street, Galati--800201, Romania

$^6$ Department of Computer Engineering, Biruni University, Istanbul--34010, Turkey

$^7$ Mathematics Research Center, Near East University, 99138 Nicosia, Cyprus

$^8$ Faculty of Arts and Sciences, University of Kyrenia, 99320 Kyrenia, Cyprus

Download Full Text PDF

 

Abstract

The current paper recovers a bright 1--soliton solution to the dispersive concatenation model that is considered with power--law of nonlinear self--phase modulation. The semi--inverse variational principle is applied to recover the soliton solution. The parameter constraints that naturally emerge from the analysis for the existence of bright solitons are also presented in the work.

References

  1. [1]  Ankiewicz, A. and Akhmediev, N. (2014), Higher--order integrable evolution equation and its soliton solutions, Physics Letters A, 378, 358-361.
  2. [2]  Ankiewicz, A., Wang, Y., Wabnitz, S., and Akhmediev, N. (2014), Extended nonlinear Schr\"odinger equation with higher--order odd and even terms and its rogue wave solutions, Physical Review E, 89, 012907.
  3. [3]  Chowdury, A., Kedziora, D.J., Ankiewicz, A., and Akhmediev, N. (2014), Soliton solutions of an integrable nonlinear Schr\"odinger equation with quintic terms, Physical Review E, 91, 032922.
  4. [4]  Chowdury, A., Kedziora, D.J., Ankiewicz, A., and Akhmediev, N. (2015), Breather--to--soliton conversions described by the quintic equation of the nonlinear Schr\"odinger hierarchy, Physical Review E, 91, 032928.
  5. [5]  Chowdury, A., Kedziora, D.J., Ankiewicz, A., and Akhmediev, N. (2015), Breather solutions of the integrable quintic nonlinear Schr\"odinger equation and their interactions, Physical Review E, 91, 022919.
  6. [6]  Hart--Simmons, M., Biswas, A., Yildirim, Y., Moshokoa, S.P., Dakova, A., and Asiri, A. (2024), Optical soliton perturbation with the concatenation model: semi--inverse variation, Proceedings of the Bulgarian Academy of Sciences, 77(3), 330--337.
  7. [7]  Roy, A., Hart--Simmons, M., Kohl, R.W., Biswas, A., Yildirim, Y., and Alshomrani, A.S. (2024), Optical soliton perturbation with dispersive concatenation model: semi--inverse variation, Ukrainian Journal of Physical Optics, 25(4), 04082--04089.
  8. [8]  Dakova--Mollova, A., Miteva, P., Slavchev, V., Kovachev, K., Kasapeteva, Z., Dakova, D., and Kovachev, L. (2024), Propagation of broad-band optical pulses in dispersionless media, Ukrainian Journal of Physical Optics, 25(5), S1102-S1110.
  9. [9]  Li, N., Chen, Q., Triki, H., Liu, F., Sun, Y., Xu, S., and Zhou, Q. (2024), Bright and dark solitons in a (2+1)--dimensional spin--1 Bose--Einstein condensates, Ukrainian Journal of Physical Optics, 25(5), S1060-S1074.
  10. [10]  Ozkan, Y.S. and Yasar, E. (2024), Three efficient schemes and highly dispersive optical solitons of perturbed Fokas--Lenells equation in stochastic form, Ukrainian Journal of Physical Optics, 25(5), S1017-S1038.
  11. [11]  Cao, X.Q., Guo, Y.N., Zhang, C.Z., Hou, S.C., and Peng, K.C. (2020), Different groups of variational principles for Whitham--Broer--Kaup equations in shallow water, Journal of Applied and Computational. Mechanics, 6, 1178-1183.
  12. [12]  He, J.H. (1997), Semi--inverse method of establishing generalized variational principles for fluid mechanics with emphasis on turbomachinery aerodynamics, International Journal of Turbo and Jet Engines, 14, 23-28.
  13. [13]  Ozis, T. and Yildirim, A. (2007), Application of He's semi--inverse method to the nonlinear Schr\"odinger equation, Computers $\&$ Mathematics with Applications, 54(7-8), 1039-1042.
  14. [14]  Xu, S.Y., Yang, A.C., and Zhou, Q. (2024), Prediction of nondegenerate solitons and parameters in nonlinear birefringent optical fibers using PHPINN and DEEPONET algorithms, Ukrainian Journal of Physical Optics, 25(5), S1137-S1150.
  15. [15]  Samir, I. and Ahmed, H.M. (2024), Retrieval of solitons and other wave solutions for stochastic nonlinear Schrödinger equation with non--local nonlinearity using the improved modified extended tanh--function method, Journal of Optics, \underline {in press}.
  16. [16]  Tang, L. (2024), Optical solitons perturbation for the concatenation system with power law nonlinearity, To appear in Journal of Optics, \underline {in press}.
  17. [17]  Ahmed, K.K., Badra, N.M., Ahmed, H.M., and Rabie, W.B. (2024), Unveiling optical solitons and other solutions for fourth--order (2+1)--dimensional nonlinear Schrödinger equation by modified extended direct algebraic method, Journal of Optics, \underline{in press}.
  18. [18]  Jawad, A.J.M. and Abu--AlShaeer, M.J. (2023), Highly dispersive optical solitons with cubic law and cubic--quintic--septic law nonlinearities by two methods, Al--Rafidain Journal of Engineering Sciences, 1(1), 1-8.
  19. [19]  Jihad, N. and Almuhsan, M.A.A. (2023), Evaluation of impairment mitigations for optical fiber communications using dispersion compensation techniques, Al--Rafidain Journal of Engineering Sciences, 1(1), 81-92.
  20. [20]  Wang, M.Y. (2022), Optical solitons with perturbed complex Ginzburg--Landau equation in Kerr and cubic--quintic--septic nonlinearity, Results in Physics, 33, 105077.
  21. [21]  Tang, L. (2022), Bifurcation analysis and multiple solitons in birefringent fibers with coupled Schrödinger-Hirota equation, Chaos, Solitons $\&$ Fractals, 161, 112383.
  22. [22]  Tang, L. (2022), Bifurcations and dispersive optical solitons for the nonlinear Schrödinger–Hirota equation in DWDM networks, Optik, 262, 169276.
  23. [23]  Tang, L. (2024), Dynamical behavior and multiple optical solitons for the fractional Ginzburg–Landau equation with $\beta$-derivative in optical fibers, Optical and Quantum Electronics, 56, 175.
  24. [24]  Tang, L. (2024), Optical solitons perturbation and traveling wave solutions in magneto-optic waveguides with the generalized stochastic Schrödinger–Hirota equation, Optical and Quantum Electronics, 56, 773.
  25. [25]  Tang, L. (2023), Bifurcation studies, chaotic pattern, phase diagrams and multiple optical solitons for the (2+1)-dimensional stochastic coupled nonlinear Schrödinger system with multiplicative white noise via Itô calculus, Results in Physics, 52, 106765.
  26. [26]  Tang, L. (2023), Phase portraits and multiple optical solitons perturbation in optical fibers with the nonlinear Fokas–Lenells equation, Journal of Optics, 52, 2214-2223.
  27. [27]  Tang, L., Biswas, A., Yıldırım, Y., and Alghamdi, A.A. (2023), Bifurcation analysis and optical solitons for the concatenation model, Physics Letters A, 480, 128943.