Skip Navigation Links
Journal of Applied Nonlinear Dynamics
Miguel A. F. Sanjuan (editor), Albert C.J. Luo (editor)
Miguel A. F. Sanjuan (editor)

Department of Physics, Universidad Rey Juan Carlos, 28933 Mostoles, Madrid, Spain

Email: miguel.sanjuan@urjc.es

Albert C.J. Luo (editor)

Department of Mechanical and Industrial Engineering, Southern Illinois University Ed-wardsville, IL 62026-1805, USA

Fax: +1 618 650 2555 Email: aluo@siue.edu


Limiting Behavior of Center Manifolds for Stochastic Evolutionary Equations with Time Delay in Varying Phase Spaces

Journal of Applied Nonlinear Dynamics 14(4) (2025) 941--958 | DOI:10.5890/JAND.2025.12.013

Hongyu Ma

School of Mathematics, Southwest Jiaotong University Chengdu, Sichuan, 611756, China

Download Full Text PDF

 

Abstract

In this paper, we study a class of stochastic evolutionary equations driven by colored noise with the time delay in varying phase spaces. We first prove a property of the nonlinear operator $J^\varepsilon_\rho$ and a convergence Lemma. And then, we derive the Lipschitz convergence of center manifolds in varying phase spaces.

References

  1. [1]  Duan, J., Lu, K., and Schmalfu{\ss}, B. (2003), Invariant manifolds for stochastic partial differential equations, Annals of Probability, 31, 2109-2135.
  2. [2]  Bell, J. and Cosner, C. (1984), Threshold behaviour and propagation for nonlinear differential-difference systems motivated by modeling myelinated axons, Quarterly of Applied Mathematics, 42, 1-14.
  3. [3]  Chua, L.O. and Roska, T. (1993), The CNN paradigm, IEEE Transactions on Circuits and Systems I, 40, 147-156.
  4. [4]  Hadamard, J. (1901), Sur l'iteration et les solutions asymptotiques des equations differentielles, Bulletin de la Société Mathématique de France, 29, 224-228.
  5. [5]  Lyapunov, A.M. (1947), Probl{\`e}me g{e}neral de la stabilit{e} du mouvement, Princeton University Press, Princeton.
  6. [6]  Perron, O. (1928), {\"U}ber Stabilit{\"a}t und asymptotisches Verhalten der Integrale von Differentialgleichungssystemen, Mathematische Zeitschrift, 29, 129-160.
  7. [7]  Bates, P.W., Lu, K., and Zeng, C. (1999), Persistence of overflowing manifolds for semiflow, Communications on Pure and Applied Mathematics, 52, 983-1046.
  8. [8]  Bates, P.W., Lu, K., and Zeng, C. (1998), Existence and persistence of invariant manifolds for semiflows in Banach space, Memoirs of the American Mathematical Society, 135, 645.
  9. [9]  Bates, P.W., Lu, K., and Zeng, C. (2008), Approximately invariant manifolds and global dynamics of spike states, Inventiones Mathematicae, 174, 355-433.
  10. [10]  Henry, D. (1981), Geometric Theory of Semilinear Parabolic Equations, Springer, New York.
  11. [11]  Chueshov, I.D. and Girya, T.V. (1995), Inertial manifolds and stationary measures for stochastically perturbed dissipative dynamical systems, Sbornik: Mathematics, 186, 29-45.
  12. [12]  Arnold, L. (1998), Random Dynamical Systems, Springer, New York.
  13. [13]  Duan, J., Lu, K., and Schmalfu{\ss}, B. (2004), Smooth Stable and Unstable Manifolds for Stochastic Evolutionary Equations, Journal of Dynamics and Differential Equations, 16, 949-972.
  14. [14]  Prizzi, M. and Rybakowski, K.P. (2003), Inertial manifolds on squeezed domains, Journal of Dynamics and Differential Equations, 15, 1-48.
  15. [15]  Kuelbs, J. and LePage, R. (1973), The law of the iterated logarithm for Brownian motion in a Banach space, Transactions of the American Mathematical Society, 185, 253-264.
  16. [16]  Shen, J., Zhao, J., Lu, K., and Wang, B. (2019), The Wong-Zakai approximations of invariant manifolds and foliations for stochastic evolution equations, Journal of Differential Equations, 266, 4568-4623.
  17. [17]  Zhao, J., Shen, J., and Lu, K. (2020), Conjugate dynamics on center-manifolds for stochastic partial differential equations, Journal of Differential Equations, 269, 5997-6054.
  18. [18]  Hale, J.K. and Raugel, G. (1992), Reaction-diffusion equation on the thin domain, Journal de Mathématiques Pures et Appliquées, 71, 33-95.
  19. [19]  Arrieta, J.M. and Santamar{i}a, E. (2014), Estimates on the distance of inertial manifolds, Discrete and Continuous Dynamical Systems, 34, 3921-3944.
  20. [20]  Li, D., Lu, K., Wang, B., and Wang, X. (2018), Limiting behavior of dynamics for stochastic reaction-diffusion equations with additive noise on thin domains, Discrete and Continuous Dynamical Systems, 38, 187-208.
  21. [21]  Schmalfu{\ss}, B. (1998), A random fixed point theorem and the random graph transformation, Journal of Mathematical Analysis and Applications, 225, 91-113.
  22. [22]  Varchon, N. (2012), Domain perturbation and invariant manifolds, Journal of Evolution Equations, 12, 547-569.
  23. [23]  Wanner, T. (1995), Linearization of random dynamical systems, Dynamics Reported, 4, 203-268.
  24. [24]  Shi, L. (2020), Smooth convergence of random center manifolds for SPDEs in varying phase spaces, Journal of Differential Equations, 269, 1963-2011.
  25. [25]  Shi, L., Li, D., and Lu, K. (2021), Limiting behavior of unstable manifolds for SPDEs in varying phase spaces, Discrete and Continuous Dynamical Systems, 26, 6311-6337.
  26. [26]  Shi, L. and Zhou, L. (2022), $C^{1,\nu}$-convergence of center manifolds for stochastic PDEs driven by colored noise on thin domain, Journal of Differential Equations, 310, 99-137.
  27. [27]  Caraballo, T., Chueshov, I.D., and Kloeden, P.E. (2007), Synchronization of a stochastic reaction-diffusion system on a thin two-layer domain, SIAM Journal on Mathematical Analysis, 38, 1489-1507.
  28. [28]  Chueshov, I. and Kuksin, S. (2008), Random kick-forced 3D Navier-Stokes equations in a thin domain, Archive for Rational Mechanics and Analysis, 188, 117-153.
  29. [29]  Ngiamsunthorn, P.S. (2013), Invariant manifolds for parabolic equations under perturbation of the domain, Nonlinear Analysis: Theory, Methods and Applications, 80, 23-48.
  30. [30]  Chueshov, I. and Kuksin, S. (2008), Stochastic 3D Navier-Stokes equations in a thin domain and its $\alpha$-approximation, Journal of Physics D: Applied Physics, 237, 1352-1367.
  31. [31]  Prizzi, M. and Rybakowski, K.P. (2001), The effect of domain squeezing upon the dynamics of reaction-diffusion equations, Journal of Differential Equations, 173, 271-320.