Journal of Applied Nonlinear Dynamics
Limiting Behavior of Center Manifolds for Stochastic Evolutionary Equations with Time Delay in Varying Phase Spaces
Journal of Applied Nonlinear Dynamics 14(4) (2025) 941--958 | DOI:10.5890/JAND.2025.12.013
Hongyu Ma
School of Mathematics, Southwest Jiaotong University Chengdu,
Sichuan, 611756, China
Download Full Text PDF
Abstract
In this paper, we study a class of stochastic evolutionary equations driven by colored noise with the time delay in varying phase spaces. We first prove a property of the nonlinear operator $J^\varepsilon_\rho$ and a convergence Lemma. And then, we derive the Lipschitz convergence of center manifolds in varying phase spaces.
References
-
[1]  | Duan, J., Lu, K., and Schmalfu{\ss}, B. (2003), Invariant manifolds for stochastic partial differential equations, Annals of Probability, 31, 2109-2135.
|
-
[2]  | Bell, J. and Cosner, C. (1984), Threshold behaviour and propagation for nonlinear differential-difference systems motivated by modeling myelinated axons, Quarterly of Applied Mathematics, 42, 1-14.
|
-
[3]  | Chua, L.O. and Roska, T. (1993), The CNN paradigm, IEEE Transactions on Circuits and Systems I, 40, 147-156.
|
-
[4]  | Hadamard, J. (1901), Sur l'iteration et les solutions asymptotiques des equations differentielles, Bulletin de la Société Mathématique de France, 29, 224-228.
|
-
[5]  | Lyapunov, A.M. (1947), Probl{\`e}me g{e}neral de la stabilit{e} du mouvement, Princeton University Press, Princeton.
|
-
[6]  | Perron, O. (1928), {\"U}ber Stabilit{\"a}t und asymptotisches Verhalten der Integrale von Differentialgleichungssystemen, Mathematische Zeitschrift, 29, 129-160.
|
-
[7]  | Bates, P.W., Lu, K., and Zeng, C. (1999), Persistence of overflowing manifolds for semiflow, Communications on Pure and Applied Mathematics, 52, 983-1046.
|
-
[8]  | Bates, P.W., Lu, K., and Zeng, C. (1998), Existence and persistence of invariant manifolds for semiflows in Banach space, Memoirs of the American Mathematical Society, 135, 645.
|
-
[9]  | Bates, P.W., Lu, K., and Zeng, C. (2008), Approximately invariant manifolds and global dynamics of spike states, Inventiones Mathematicae, 174, 355-433.
|
-
[10]  | Henry, D. (1981), Geometric Theory of Semilinear Parabolic Equations, Springer, New York.
|
-
[11]  | Chueshov, I.D. and Girya, T.V. (1995), Inertial manifolds and stationary measures for stochastically perturbed dissipative dynamical systems, Sbornik: Mathematics, 186, 29-45.
|
-
[12]  | Arnold, L. (1998), Random Dynamical Systems, Springer, New York.
|
-
[13]  | Duan, J., Lu, K., and Schmalfu{\ss}, B. (2004), Smooth Stable and Unstable Manifolds for Stochastic Evolutionary Equations, Journal of Dynamics and Differential Equations, 16, 949-972.
|
-
[14]  | Prizzi, M. and Rybakowski, K.P. (2003), Inertial manifolds on squeezed domains, Journal of Dynamics and Differential Equations, 15, 1-48.
|
-
[15]  | Kuelbs, J. and LePage, R. (1973), The law of the iterated logarithm for Brownian motion in a Banach space, Transactions of the American Mathematical Society, 185, 253-264.
|
-
[16]  | Shen, J., Zhao, J., Lu, K., and Wang, B. (2019), The Wong-Zakai approximations of invariant manifolds and foliations for stochastic evolution equations, Journal of Differential Equations, 266, 4568-4623.
|
-
[17]  | Zhao, J., Shen, J., and Lu, K. (2020), Conjugate dynamics on center-manifolds for stochastic partial differential equations, Journal of Differential Equations, 269, 5997-6054.
|
-
[18]  | Hale, J.K. and Raugel, G. (1992), Reaction-diffusion equation on the thin domain, Journal de Mathématiques Pures et Appliquées, 71, 33-95.
|
-
[19]  | Arrieta, J.M. and Santamar{i}a, E. (2014), Estimates on the distance of inertial manifolds, Discrete and Continuous Dynamical Systems, 34, 3921-3944.
|
-
[20]  | Li, D., Lu, K., Wang, B., and Wang, X. (2018), Limiting behavior of dynamics for stochastic reaction-diffusion equations with additive noise on thin domains, Discrete and Continuous Dynamical Systems, 38, 187-208.
|
-
[21]  | Schmalfu{\ss}, B. (1998), A random fixed point theorem and the random graph transformation, Journal of Mathematical Analysis and Applications, 225, 91-113.
|
-
[22]  | Varchon, N. (2012), Domain perturbation and invariant manifolds, Journal of Evolution Equations, 12, 547-569.
|
-
[23]  | Wanner, T. (1995), Linearization of random dynamical systems, Dynamics Reported, 4, 203-268.
|
-
[24]  | Shi, L. (2020), Smooth convergence of random center manifolds for SPDEs in varying phase spaces, Journal of Differential Equations, 269, 1963-2011.
|
-
[25]  | Shi, L., Li, D., and Lu, K. (2021), Limiting behavior of unstable manifolds for SPDEs in varying phase spaces, Discrete and Continuous Dynamical Systems, 26, 6311-6337.
|
-
[26]  | Shi, L. and Zhou, L. (2022), $C^{1,\nu}$-convergence of center manifolds for stochastic PDEs driven by colored noise on thin domain, Journal of Differential Equations, 310, 99-137.
|
-
[27]  | Caraballo, T., Chueshov, I.D., and Kloeden, P.E. (2007), Synchronization of a stochastic reaction-diffusion system on a thin two-layer domain, SIAM Journal on Mathematical Analysis, 38, 1489-1507.
|
-
[28]  | Chueshov, I. and Kuksin, S. (2008), Random kick-forced 3D Navier-Stokes equations in a thin domain, Archive for Rational Mechanics and Analysis, 188, 117-153.
|
-
[29]  | Ngiamsunthorn, P.S. (2013), Invariant manifolds for parabolic equations under perturbation of the domain, Nonlinear Analysis: Theory, Methods and Applications, 80, 23-48.
|
-
[30]  | Chueshov, I. and Kuksin, S. (2008), Stochastic 3D Navier-Stokes equations in a thin domain and its $\alpha$-approximation, Journal of Physics D: Applied Physics, 237, 1352-1367.
|
-
[31]  | Prizzi, M. and Rybakowski, K.P. (2001), The effect of domain squeezing upon the dynamics of reaction-diffusion equations, Journal of Differential Equations, 173, 271-320.
|