Journal of Applied Nonlinear Dynamics
Stability Analysis and Combination-Combination Synchronization of the Chaotic System
Journal of Applied Nonlinear Dynamics 14(4) (2025) 819--834 | DOI:10.5890/JAND.2025.12.005
Vijay K. Shukla, Mahesh C. Joshi
Department of Mathematics, D.S.B. Campus, Kumaun University, Nainital-263001, Uttarakhand, India
Download Full Text PDF
Abstract
This work examines the analysis of Jacobi stability of the Sprott-C system by using the KCC-theory. The five KCC invariants are obtained to study the system's characteristics. We also calculate the spherical and ellipsoidal ultimate bound of the ecological model. Further, we analyze combination-combination synchronization among chaotic systems with delay and without delay terms. To see the effect of time-delay on combination-combination synchronization we are considering the time-delay ecological chaotic system. By designing suitable controllers, the synchronization among these systems is achieved. Finally, numerical results validate the feasibility of the designed control method.
References
-
[1]  | Kosambi, D.D. (1933), Parallelism and path-space, Mathematische Zeitschrift, 37, 608.
|
-
[2]  | Cartan, E. (1933), Observations sur le mémoire précédent, Mathematische Zeitschrift, 37, 619.
|
-
[3]  | Chern, S.S. (1939), Sur la géométrie d'un système d'équations différentielles du second ordre, Bulletin of Mathematical Sciences, 63, 206-212.
|
-
[4]  | Antonelli, P.L., Ingarden, R., and Matsumoto, M. (1993), The Theory of Sprays and Finsler Spaces with Applications, Kluwer Academic Publishers, Dordrecht.
|
-
[5]  | Sabau, S.V. (2005), Some remarks on Jacobi stability, Nonlinear Analysis: Theory, Methods and Applications, 63(5), 143-153.
|
-
[6]  | Harko, T., Ho, C.Y., Leung, C.S., and Yip, S. (2015), Jacobi stability analysis of the Lorenz system, International Journal of Geometric Methods in Modern Physics, 12(7), 1550081.
|
-
[7]  | Boehmer, C.G., Harko, T., and Sabau, S.V. (2012), Jacobi stability analysis of dynamical systems - applications in gravitation and cosmology, Advances in Theoretical and Mathematical Physics, 16(4), 1145-1196.
|
-
[8]  | Gupta, M.K., and Yadav, C.K. (2017), Jacobi stability analysis of modified Chua circuit system, International Journal of Geometric Methods in Modern Physics, 14(06), 1750089.
|
-
[9]  | Gupta, M.K., and Yadav, C.K. (2016), Jacobi stability analysis of Rikitake system, International Journal of Geometric Methods in Modern Physics, 13(07), 1650098.
|
-
[10]  | Huang, Q., Liu, A., and Liu, Y. (2019), Jacobi stability analysis of the Chen system, International Journal of Bifurcation and Chaos, 29(10), 1950139.
|
-
[11]  | Leonov, G.A. (2001), Bounds for attractors and the existence of homoclinic orbits in the Lorenz system, Journal of Applied Mathematics and Mechanics, 65(1), 19-32.
|
-
[12]  | Li, D., Lu, J.A., Wu, X., and Chen, G. (2005), Estimating the bounds for the Lorenz family of chaotic systems, Chaos, Solitons $\&$ Fractals, 23(2), 529-534.
|
-
[13]  | Liao, X. (2004), On the global basin of attraction and positively invariant set for the Lorenz chaotic system and its application in chaos control and synchronization, Science in China Series E, 34(12), 1404-1419.
|
-
[14]  | Leonov, G.A., Bunin, A.I., and Koksch, N. (1987), Attraktorlokalisierung des Lorenz-Systems, ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik, 67(12), 649-656.
|
-
[15]  | Zhang, F., and Zhang, G. (2014), Boundedness solutions of the complex Lorenz chaotic system, Applied Mathematics and Computation, 243, 12-23.
|
-
[16]  | Lin, M., Hou, Y., Al-Towailb, M.A., and Saberi-Nik, H. (2023), The global attractive sets and synchronization of a fractional-order complex dynamical system, AIMS Mathematics, 8(2), 3523-3541.
|
-
[17]  | Li, D., Lu, J.A., Wu, X., and Chen, G. (2006), Estimating the ultimate bound and positively invariant set for the Lorenz system and a unified chaotic system, Journal of Mathematical Analysis and Applications, 323(2), 844-853.
|
-
[18]  | Pan, Y., Er, M.J., and Sun, T. (2012), Composite adaptive fuzzy control for synchronizing generalized Lorenz systems, Chaos: An Interdisciplinary Journal of Nonlinear Science, 22(2), 1-7.
|
-
[19]  | Park, C.W., Lee, C.H., and Park, M. (2002), Design of an adaptive fuzzy model-based controller for chaotic dynamics in Lorenz systems with uncertainty, Information Sciences, 147(4), 245-266.
|
-
[20]  | Shukla, V.K., Kumar, A., and Mishra, P.K. (2023), Chaos synchronization of complex chaotic systems via nonlinear control method, AIP Conference Proceedings, 2819(1), 1-13.
|
-
[21]  | Bouzeriba, A., Boulkroune, A., and Bouden, T. (2016), Projective synchronization of two different fractional-order chaotic systems via adaptive fuzzy control, Neural Computing and Applications, 27, 1349-1360.
|
-
[22]  | Sun, J., Shen, Y., Zhang, G., Xu, C., and Cui, G. (2013), Combination–combination synchronization among four identical or different chaotic systems, Nonlinear Dynamics, 73, 1211-1222.
|
-
[23]  | Kharabian, B., and Mirinejad, H. (2023), Switched combination synchronization of nonidentical fractional-order chaotic systems using neuro-fuzzy sliding mode control, American Control Conference, 2203-2209.
|
-
[24]  | Sun, J., Shen, Y., Wang, X., and Chen, J. (2014), Finite-time combination-combination synchronization of four different chaotic systems with unknown parameters via sliding mode control, Nonlinear Dynamics, 76, 383-397.
|
-
[25]  | Ojo, K.S., Njah, A.N., Olusola, O.I., and Omeike, M.O. (2014), Reduced order projective and hybrid projective combination-combination synchronization of four chaotic Josephson junctions, Journal of Chaos, 2014(282407), 1-9.
|
-
[26]  | Dong, W., Wang, C., Zhang, H., and Ma, P. (2023), Finite-time combination-combination synchronization of hyperchaotic systems with different structures and its application, Journal of System Simulation, 35(7), 1590-1601.
|
-
[27]  | Ibraheem, A., and Kumar, N. (2021), Dual combination–combination synchronization of time-delayed dynamical systems via adaptive sliding mode control under uncertainties and external disturbances, International Journal of Dynamics and Control, 9, 737-754.
|
-
[28]  | Zhang, Y., Yang, Z., and Fath, B.D. (2010), Ecological network analysis of an urban water metabolic system: model development, and a case study for Beijing, Science of the Total Environment, 408(20), 4702-4711.
|
-
[29]  | Bhardwaj, R., and Das, S. (2019), Chaos control dynamics in competitive herbivore species network, Jñānābha, 49(2), 22-28.
|
-
[30]  | Bagchi, D., Arumugam, R., Chandrasekar, V.K., and Senthilkumar, D.V. (2024), Generalized synchronization in a tritropic food web metacommunity, Journal of Theoretical Biology, 567, 111759.
|
-
[31]  | Arellano-Véliz, N.A., Jeronimus, B.F., Kunnen, E.S., and Cox, R.F. (2024), The interacting partner as the immediate environment: Personality, interpersonal dynamics, and bodily synchronization, Journal of Personality, 92(1), 180-201.
|
-
[32]  | Takyi, E.M., Parshad, R.D., Upadhyay, R.K., and Rai, V. (2023), Blow-Up Dynamics and Synchronization in Tri-Trophic Food Chain Models, Algorithms, 16(4), 180.
|
-
[33]  | Dwivedi, S., and Kumari, N. (2023), Effectiveness of phase synchronization in chaotic food chain model with refugia and Allee effects during seasonal fluctuations, Chaos: An Interdisciplinary Journal of Nonlinear Science, 33(6), 1-24.
|
-
[34]  | Jafari, S., Sprott, J.C., and Golpayegani, S.M.R.H. (2013), Elementary quadratic chaotic flows with no equilibria, Physics Letters A, 377(9), 699-702.
|
-
[35]  | Rahman, Q.I., and Schmeisser, G. (2002), Analytic Theory of Polynomials, Oxford University Press, Oxford.
|
-
[36]  | Mahmoud, E.E., Trikha, P., Jahanzaib, L.S., and Almaghrabi, O.A. (2020), Dynamical analysis and chaos control of the fractional chaotic ecological model, Chaos, Solitons $\&$ Fractals, 141, 110348.
|
-
[37]  | Bateman, P.W., Fleming, P.A., and Wolfe, A.K. (2017), A different kind of ecological modelling: the use of clay model organisms to explore predator–prey interactions in vertebrates, Journal of Zoology, 301(4), 251-262.
|
-
[38]  | Park, J.H., and Kwon, O.M. (2005), A novel criterion for delayed feedback control of time-delay chaotic systems, Chaos, Solitons $\&$ Fractals, 23(2), 495-501.
|
-
[39]  | Zhu, Z.Y., Zhao, Z.S., Zhang, J., Wang, R.K., and Li, Z. (2020), Adaptive fuzzy control design for synchronization of chaotic time-delay system, Information Sciences, 535, 225-241.
|
-
[40]  | Hale, J.K. (2006), Functional Differential Equations, Springer, Berlin, Heidelberg.
|
-
[41]  | Dănilă, B., Harko, T., Mak, M.K., Pantaragphong, P., and Sabau, S.V. (2016), Jacobi stability analysis of scalar field models with minimal coupling to gravity in a cosmological background, Advances in High Energy Physics, 2016, 1-26.
|