Skip Navigation Links
Journal of Applied Nonlinear Dynamics
Miguel A. F. Sanjuan (editor), Albert C.J. Luo (editor)
Miguel A. F. Sanjuan (editor)

Department of Physics, Universidad Rey Juan Carlos, 28933 Mostoles, Madrid, Spain

Email: miguel.sanjuan@urjc.es

Albert C.J. Luo (editor)

Department of Mechanical and Industrial Engineering, Southern Illinois University Ed-wardsville, IL 62026-1805, USA

Fax: +1 618 650 2555 Email: aluo@siue.edu


An $(\alpha,\beta)$- Quadratic Stochastic Operator Acting in $S^2$

Journal of Applied Nonlinear Dynamics 11(4) (2022) 777--788 | DOI:10.5890/JAND.2022.12.001

U.U. Jamilov$^{1,2,3}$, Kh. O. Khudoyberdiev$^{1}$

$^{1}$ V.I. Romanovskiy Institute of Mathematics, Uzbekistan Academy of Sciences, 9, University str., Tashkent, Uzbekistan

$^{2}$ Akfa University, 264, National Park str., Qibray district, 111221, Tashkent region, Uzbekistan

$^{3}$ National University of Uzbekistan, 4, University str., Tashkent, Uzbekistan

Download Full Text PDF

 

Abstract

In the present paper we consider a family of non-Volterra quadratic stochastic operators depending on the parameters $\alpha, \beta$ and study their trajectory behaviors. We find all fixed and periodic points for an $(\alpha,\beta)$- quadratic stochastic operator on the two-dimensional simplex. A complete description of the set of limit points is given, and we show that such operators have the ergodic property.

References

  1. [1]  Lyubich, Y.I. (1992), Mathematical structures in population genetics, vol. 22 of Biomathematics, Springer- Verlag, Berlin.
  2. [2]  Bernstein, S. (1942), Solution of a mathematical problem connected with the theory of heredity, The Annals of Mathematical Statistics, 13(1), 53-61.
  3. [3]  Ganikhodjaev, N.N., Ganikhodjaev, R.N., and Jamilov(Zhamilov), U.U. (2015), Quadratic stochastic operators and zero-sum game dynamics, Ergod. Th. and Dynam. Sys., 35(5), 1443-1473.
  4. [4]  Ganikhodjaev, N.N. Jamilov, U.U., and Mukhitdinov, R.T. (2013), On non - ergodic transformations on $S^3$, Jour. Phys. Conf. Ser., 435, 012005.
  5. [5]  Ganikhodjaev, N.N., Jamilov, U.U., and Mukhitdinov, R.T. (2014), Nonergodic quadratic operator for a two-sex population, Ukrainian Math. J., 65(8), 1282-1291.
  6. [6]  Ganikhodzhaev, R.N. (1993), Quadratic stochastic operators, Lyapunov functions and tournaments, Sb. Math., 76(2), 489-506.
  7. [7]  Ganikhodzhaev, R., Mukhamedov, F., and Rozikov, U. (2011), Quadratic stochastic operators and processes: results and open problems, Infin. Dimens. Anal. Quan. Probab. Relat. Top., 14(2), 279-335.
  8. [8]  Jamilov, U.U. (2013), Quadratic stochastic operators corresponding to graphs, Lobachevskii J. Math., 34(2), 148-151.
  9. [9]  Jamilov, U.U. (2016), On a family of strictly non-volterra quadratic stochastic operators, Jour. Phys. Conf. Ser., 697, 012013.
  10. [10]  Jamilov, U.U. (2016), On symmetric strictly non-Volterra quadratic stochastic operators, Disc. Nonlin. Comp., 5(3), 263-283.
  11. [11]  Jamilov, U.U. and Ladra, M. (2016), Non-ergodicity of uniform quadratic stochastic operators, Qual. Theory Dyn. Syst., 15(1), 257-271.
  12. [12]  Jamilov, U.U., Ladra, M., and Mukhitdinov, R.T. (2017), On the equiprobable strictly non-Volterra quadratic stochastic operators, Qual. Theory Dyn. Syst., 16(3), 645-655.
  13. [13]  Jamilov, U.U., Scheutzow, M., and Wilke-Berenguer, M. (2017), On the random dynamics of Volterra quadratic operators, Ergodic Th. Dynam. Sys., 37(1), 228-243.
  14. [14]  Kesten, H. (1970), Quadratic transformations: A model for population growth. I, Advances in Appl. Probability, 2, 1-82.
  15. [15]  Khamraev, A.Yu. (2019), On the dynamics of a quasi strictly non-Volterra quadratic stochastic operator, Ukrainian Math. J., 71(8), 1116-1122.
  16. [16]  Rozikov, U.A. and Zhamilov, U.U. (2008), F-quadratic stochastic operators, Math. Notes, 83(3-4), 554-559.
  17. [17]  Rozikov, U.A. and Zhamilov, U.U. (2011), Volterra quadratic stochastic operators of a two-sex population, Ukrainian Math. J., 63(7), 1136-1153.
  18. [18]  Ulam, S.M. (1960), A collection of mathematical problems, Interscience Tracts in Pure and Applied Mathematics, 8, Interscience Publishers, New York-London.
  19. [19]  Zakharevich, M.I. (1978), On the behaviour of trajectories and the ergodic hypothesis for quadratic mappings of a simplex, Russ. Math. Surv., 33(6), 265-266.
  20. [20]  Zhamilov, U.U. and Rozikov, U.A. (2009), On the dynamics of strictly non-Volterra quadratic stochastic operators on a two-dimensional simplex, Sb. Math., 200(9), 1339-1351.
  21. [21]  Mukhamedov, F. and Ganikhodjaev, N. (2015), Quantum Quadratic Operators and Processes, Springer, Berlin.
  22. [22]  Lyubich, Y.I. (1974), Iterations of quadratic maps, Math. Econ. Func. Ana. Nauka: Moscow, 109-138. (Russian).
  23. [23]  Kolokoltsov, V.N. (2010), Nonlinear Markov Processes and Kinetic Equations, Cambridge Tracts in Math. vol. 182, Cambridge Univ. Press, Cambridge.
  24. [24]  Devaney, R.L. (2003), An introduction to chaotic dynamical systems, Studies in Nonlinearity, Westview Press, Boulder, CO.
  25. [25]  Ganikhodjaev, N.N., Saburov, M., and Nawi, A.M. (2014), Mutation and chaos in nonlinear models of heredity, The Sci. World Jour., 2014, 835069.
  26. [26]  Hardin, A.J.M. and Rozikov, U.A. (2019), A quasi-strictly non-Volterra quadratic stochastic operator, Qual. Theory Dyn. Syst., 18(3), 1013-1029.
  27. [27]  Jamilov, U.U., Khudoyberdiev, Kh.O., and Ladra, M. (2020), Quadratic operators corresponding to permutations, Stoch. Anal. Appl., 38(5), 929-938.