Skip Navigation Links
Journal of Applied Nonlinear Dynamics
Miguel A. F. Sanjuan (editor), Albert C.J. Luo (editor)
Miguel A. F. Sanjuan (editor)

Department of Physics, Universidad Rey Juan Carlos, 28933 Mostoles, Madrid, Spain

Email: miguel.sanjuan@urjc.es

Albert C.J. Luo (editor)

Department of Mechanical and Industrial Engineering, Southern Illinois University Ed-wardsville, IL 62026-1805, USA

Fax: +1 618 650 2555 Email: aluo@siue.edu


Existence and Boundary Control of a Nonlinear Axially Moving String Subject to Disturbances

Journal of Applied Nonlinear Dynamics 11(2) (2022) 343--358 | DOI:10.5890/JAND.2022.06.006

Abdelkarim Kelleche, Nasser-eddine Tatar

Facult\'{e} des Sciences et de la Technologie, Universit\'{e} Djilali Boun\^{a}ama, Algeria

\normalsize Department of Mathematics and Statistics, King Fahd University of Petroleum and Minerals, Dhahran\addressNewline 31261, Saudi Arabia

Download Full Text PDF

 

Abstract

This paper addresses the stabilization question for a nonlinear model of an axially moving string. The string is tensioned and is subject to spatiotemporary varying disturbances. The Hamilton principle of changing mass is employed to formulate mathematically the problem. By means of the Faedo--Galerkin method, we establish the well-posedness. A boundary control with a time-varying delay is designed to stabilize uniformly the string. Then, we derive a decay rate of the solution under the condition that the retarded term be dominated by the damping one. Some examples are given to clarify when the rate is exponential or polynomial.

References

  1. [1]  Abrate, S. (1992), Vibrations of belts and belt drives, Mech Mach Theory, 27, 649-659.
  2. [2]  Mote, C.D. (1974), Dynamic stability of axially moving materials, Shock Vib. Dig., 4(4), 2-11.
  3. [3]  Wickert, J.A. and Mote, C.D. (1988), Current research on the vibration and stability of axially-moving materials, Shock Vib Dig., 20(5), 3-13.
  4. [4]  Bapat, V.A. and Srinivasan, P. (1967), Nonlinear transverse oscillations in traveling strings by the method of harmonic balance, J. Appl Mech., 34, 775-777.
  5. [5]  Carrier, G.F. (1965), On the nonlinear vibration problem of the elastic string, Quart Appls Maths., 3, 157-198.
  6. [6]  Chung, C. and Tan, C.A. (1995), Active vibration control of the axially moving string by wave cancellation, J. Vib. Acoust., 117, 49-55.
  7. [7]  Kukl{\i}k, V. and Kudlacek, J. (2016), Hot-dip Galvanizing of steel structures, Elsevier.
  8. [8]  McIver, D.B. (1973), Hamilton's principle for systems of changing mass, J. Engin. Math., 7(3), 249-261.
  9. [9]  Yang, K.S and Matsuno, F. (2005), The rate of change of an energy functional for axially moving continua, IFAC Proceedings, 38(1), 610-615.
  10. [10]  Reynolds, O. (1903), Papers on Mechanical and Physical studies, The sub-Mechanics of the universe, Cambridge University Press.
  11. [11]  Quo, Z. (2002), An iterative learning algorithm for boundary control of a stretched moving string, Automatica, 38(5), 821-827.
  12. [12]  Fung, R.F. and Tseng, C.C. (1999), Boundary control of an axially moving string via Lyapunov method, J. Dyn. Syst. Meas. Control, 121, 105-110.
  13. [13]  Fung, R.F., Wu, J.W., and Wu, S.L. (1999), Stabilization of an Axially Moving String by Nonlinear Boundary Feedback, ASME J. Dyn. Syst. Meas. Control, 121, 117-121.
  14. [14]  Li, T. and Hou, Z. (2006), Exponential stabilization of an axially moving string with geometrical nonlinearity by linear boundary feedback, J. Sound Vib., 296, 861-870.
  15. [15]  Shahruz, S.M and Kurmaji, D.A. (1997), Vibration suppression of a non-linear axially moving string by boundary control, J Sound Vib., 201(1), 145-152.
  16. [16]  Kelleche, A., Berkani, A., and Tatar, N.E. (2018), Uniform stabilization of a nonlinear axially moving string by a boundary control of memory type, J. Dyn. Control Sys., 24(2), 313-323.
  17. [17]  Lions, J.L. (1988), Exact controllability, stabilization and perturbations for distributed parameter system, SIAM. Rev., 30, 1-68.
  18. [18]  Xu, G.Q. and Guo, B.Z. (2003), Riesz basis property of evolution equations in Hilbert spaces and application to a coupled string equation, SIAM J. Control Optim., 42, 966-984.
  19. [19]  Shubov, M.A. (1999), The Riesz basis property of the system of root vectors for the equation of a nonhomogeneous damped string: transformation operators method, Methods Appl. Anal., 6, 571-591.
  20. [20]  Datko, R., Lagness, J., and Poilis, M.P. (1986), An example on the effect of time delays in boundary feedback stabilization of wave equations, SIAM J. Control Optim., 24, 152-156.
  21. [21]  Xu, G.Q., Yung, S.P., and Li, L.K. (2006), Stabilization of wave systems with input delay in the boundary control, ESAIM: COCV., 12(4), 770-785.
  22. [22]  Nicaise, S. and Pignotti, C. (2006), Stability and instability results of the wave equation with a delay term in the boundary or internal feedbacks, SIAM J. Control Optim., 45(5), 1561-1585.
  23. [23]  Yang, K.S. and Matsuno, F. (2004), Robust adaptive boundary control of an axially moving string under a spatiotemporally varying tension, J. Sound. Vib., 273, 1007-1029.
  24. [24]  Kelleche, A., Tatar, N-e. and Khemmoudj, A. (2016), Uniform stabilization of an axially moving Kirchhoff string by a boundary control of memory type, J. Dyn. Control Syst., 23(2), 237-247.
  25. [25]  Kelleche, A. and Tatar, N-e. (2018), Control of an axially moving viscoelastic Kirchhoff string, Applicable Analysis, 97(4), 592-609.
  26. [26]  Kelleche, A. and Tatar, N-e. (2018), Existence and stabilization of a Kirchhoff moving string with a delay in the boundary or in the internal feedback, Evol. Equ. Control theory, 7(4), 599-616.
  27. [27]  Airapetyan, R.G., Ramm, A.G., and Smirnova, A.B. (2000), Continuous methods for solving nonlinear ill-posed problems, Operator Theo. Appl., 25, 111-138.
  28. [28]  Lions, J.L. (1969), Quelques m{e}thodes de r{e}solution des probl \`{e}mes aux limites non lin{e}aires, Dunod 1969.
  29. [29]  Gerbi, S. and Said-Houari, B. (2008), Existence and exponential stability of a damped wave equation with dynamic boundary conditions and a delay term, Appl. Math. Comp., 218(24), 11900-11910.
  30. [30]  Shahruz, S.M. (1998), Boundary control of the axially moving Kirchhoff string, Automatica, 34(10), 1273-1277.
  31. [31]  Shahruz, S.M. (2000), Boundary control of a nonlinear axially moving string, Inter. J. Robust. Nonl. Control, 10(1), 17-25.
  32. [32]  Shahruz, S.M. and Kurmaji, D.A. (1997), Vibration suppression of a non-linear axially moving string by boundary control, J. Sound. Vib., 201(1), 145-152.