Skip Navigation Links
Journal of Applied Nonlinear Dynamics
Miguel A. F. Sanjuan (editor), Albert C.J. Luo (editor)
Miguel A. F. Sanjuan (editor)

Department of Physics, Universidad Rey Juan Carlos, 28933 Mostoles, Madrid, Spain


Albert C.J. Luo (editor)

Department of Mechanical and Industrial Engineering, Southern Illinois University Ed-wardsville, IL 62026-1805, USA

Fax: +1 618 650 2555 Email:

On the Practical Output $h$-Stabilization of Nonlinear Uncertain Systems

Journal of Applied Nonlinear Dynamics 10(4) (2021) 659--669 | DOI:10.5890/JAND.2021.12.006

H. Damak

University of Sfax, Faculty of Sciences of Sfax, Department of Mathematics, Road of Soukra BP1171, 3000 Sfax, Tunisia

Download Full Text PDF



This paper investigates the problem of output feedback $h$-stabilization of nonlinear uncertain systems. We construct an output feedback controller that guarantees global uniform practical $h$-stability of the closed-loop system. Our original results generalize well-known fundamental results: practical stability, practical asymptotic stability and practical exponential stability for nonlinear time-varying systems. Finally, two numerical examples are presented to demonstrate the validity of the proposed method.


  1. [1]  Barmish, B.R. and Leitmann, G. (1982), On ultimate boundedness control of uncertain systems in the absence of matching assumptions, IEEE T. Automat. Control, 27, 153-158.
  2. [2]  Benabdallah, A. (2009), On the practical output feedback stabilization for nonlinear uncertain systems, Nonlinear Anal. Model., 14, 145-153.
  3. [3]  Benabdallah, A. and Hammami, M.A. (2001), On the output feedback stability for non-linear uncertain control systems, Int. J. Control., 74, 547-551.
  4. [4]  Corless, M. (1990), Guaranteed rates of exponential convergence for uncertain systems, J. Optim. Theory Appl., 64, 481-494.
  5. [5]  Corless, M. and Leitmann, G. (1981), Continuous state feedback guaranteeing uniform ultimate boundedness for uncertain dynamic systems, IEEE T. Automat. Control, 26, 1139-1143.
  6. [6]  Corless, M. and Leitmann, G. (1993), Bounded controllers for robust exponential convergence, J. Optim. Theory Appl., 76, 1-12.
  7. [7]  Khalil, H.K. (2002), Nonlinear systems, Prentice-Hall, New York.
  8. [8]  Soldatos, A.G. and Corless, M. (1991), stabilizing uncertain systems with bounded control, Dynam. Control, 1 , 227-238.
  9. [9]  Wu, H. and Mizukami, K. (1993), Exponential stability of a class of nonlinear dynamical systems with uncertainties, Systems Control Letters, 21, 307-313.
  10. [10]  Steinberg, A. and Corless M. (1985), Output feedback stabilization of uncertain dynamical systems, IEEE Trans. Automat. Contr., 30, 1025-1027.
  11. [11]  Walcott, B. (1988), Nonlinear output stabilization ot uncertain systems, Proe. American Control Conference, 2253-2258.
  12. [12]  Phat, V.N. (2006), Global stabilization for linear continuous time-varying systems, Appl. Math. Comput., 175, 1730-1743.
  13. [13]  Chen, H., Zhang, J., Chen, B. and Haitao, C. (2013), Robust synchronization of incommensurate fractional-order chaotic systems via second-order sliding mode technique, J. Appl. Math.,
  14. [14]  Chen, H., Zhang, J., Chen, B., and Baoujun, L. (2013), Global practical stabilization for non-holonomic mobile robots with uncalibrated visual parameters by using a switching controller, IMA J. Math. Control Info. 30, 543-557.
  15. [15]  Damak, H., Hammami, M.A., and Kalitine, B. (2014), On the global uniform asymptotic stability of time-varying systems, Diff. Equ. Dyn. Syst., 22, 113-124.
  16. [16]  Benabdallah, A. and Hammami, M.A. (2008), Bounded controller for uncertain nonlinear systems, J. Appl. Analysis, 14, 239-249.
  17. [17]  Ghanmi, B. (2019), On the practical $h$-stability of nonlinear systems of differential equations, J. Dyn. Control Syst., 25, 1-23.
  18. [18]  Pinto, M. (1984), Perturbations of asymptotically stable differential equations, Analysis,4, 161-175.
  19. [19]  Pinto, M. (1992), Stability of nonlinear differential system, Applicable Analysis 43, 1-20.
  20. [20]  Pinto, M. (1988), Asymptotic integration of a system resulting from the perturbation of an $h$-system, J. Math. Anal. Appl., 131, 194-216.
  21. [21]  Zhoo, B. (2017), Stability analysis of nonlinear time-varying systems by Lyapunov functions with indefinite derivatives, IET Control Theory Appl., 11, 1434-1442.