Skip Navigation Links
Journal of Applied Nonlinear Dynamics
Miguel A. F. Sanjuan (editor), Albert C.J. Luo (editor)
Miguel A. F. Sanjuan (editor)

Department of Physics, Universidad Rey Juan Carlos, 28933 Mostoles, Madrid, Spain

Email: miguel.sanjuan@urjc.es

Albert C.J. Luo (editor)

Department of Mechanical and Industrial Engineering, Southern Illinois University Ed-wardsville, IL 62026-1805, USA

Fax: +1 618 650 2555 Email: aluo@siue.edu


$\psi$-Hilfer Fractional Functional Differential Equation by Picard Operator Method

Journal of Applied Nonlinear Dynamics 9(4) (2020) 685--702 | DOI:10.5890/JAND.2020.12.011

Mohammed A. Almalahi , Mohammed S. Abdo, Satish K. Panchal

Department of Mathematics, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad-431004, (M.S.), India

Download Full Text PDF

 

Abstract

We present in this article the existence and uniqueness results for a fractional functional differential equation with boundary condition and finite delay involving $\psi-$ Hilfer --type fractional derivative. Next, we establish the equivalent mixed-type integral for boundary condition. Further, the Ulam-Hyers-Mittag-Leffler stability is discussed. The Picard operator method, Banach fixed point theorem, and generalized Gronwall's inequality plays an important role to prove our results. At the end, an illustrative example will be introduce to justify our results.

References

  1. [1]  { Hilfer, R. (1999), Application of Fractional Calculus in Physics, World Scientific, Singapore. }
  2. [2]  { Kilbas, A.A., Srivastava, H.M., and Trujillo, J.J. (2006), Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, Elsevier, Amsterdam,\ 207. }
  3. [3]  { Samko, S.G., Kilbas, A.A., and Marichev, O.I, (1987), Fractional Integrals and Derivatives: Theory and Applications% , Gordon and Breach, Yverdon. }
  4. [4]  { Podlubny, I. (1999), Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications, Math. Sci. Eng., 198, Elsevier, Amsterdam. }
  5. [5]  { Yang, X.J., Gao, F., Ju, Y., and Zhou, H.W. (2018), Fundamental solutions of the general fractional-order diffusion equations, Mathematical Methods in the Applied Sciences, 41% (18), 9312-9320. }
  6. [6]  { Yang, X.J., Feng, Y.Y., Cattani, C., and Inc, M. (2019), Fundamental solutions of anomalous diffusion equations with the decay exponential kernel. Mathematical Methods in the Applied Sciences, 42(11), 4054-4060. }
  7. [7]  { Yang, X.J. (2017), New rheological problems involving general fractional derivatives with nonsingular power-law kernels. Proceedings of the Romanian Academy Series A-Mathematics Physics Technical Sciences Information Science, (6/H), 1-8. }
  8. [8]  { Xiao-Jun, X.J., Srivastava, H.M., and Machado, J.T. (2016), A new fractional derivative without singular kernel, Therm. Sci, 20(2), 753-756. }
  9. [9]  { Yang, X.J., Gao, F., Machado, J.T., and Baleanu, D. (2017), A new fractional derivative involving the normalized sinc function without singular kernel, The European Physical Journal: Special Topics, 226(16-18), 3567-3575. }
  10. [10]  { Yang, X.J., Gao, F.E.N.G., and Srivastava, H.M. (2017), New rheological models within local fractional derivative. Rom. Rep. Phys, 69(3), 113. }
  11. [11]  { Yang, X.J., Abdel-Aty, M., and Cattani, C. (2019), A new general fractional-order derivative with Rabotnov fractional-exponential kernel applied to model the anomalous heat transfer,% \ Thermal Science, 23(3), 1677-1681. }
  12. [12]  { Agrawal, O.P., Muslih, S.I., and Baleanu, D. (2011), Generalized variational calculus in terms of multi-parameters fractional derivatives, Communications in Nonlinear Science and Numerical Simulation, 16(12), 4756-4767. }
  13. [13]  { Baleanu, D., Agrawal, O.P., and Muslih, S.I. (2011), Lagrangians with linear velocities within Hilfer fractional derivative. In ASME 2011 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, % American Society of Mechanical Engineers Digital Collection, (pp. 335-338). }
  14. [14]  { Agrawal, O.P. (2012), Some generalized fractional calculus operators and their applications in integral equations,\ Fract. Calc. Appl. Anal,\ 15 , 700-711. }
  15. [15]  { Almeida, R.(2017), A Caputo fractional derivative of a function with respect to another function,\ Commun. Nonlinear Sci. Numer. Simul., 44 , 460-481. }
  16. [16]  { Ulam, S.M. (1960), A Collection of Mathematical Problems, Interscience Tracts in Pure and Applied Mathematics, 8, Inter-science, New York-London. }
  17. [17]  { Hyers, D.H., Isac, G., and Rassias, T.M. (1998),% \ Stability of Functional Equations in Several Variables, Progr. Nonlinear Differential Equations Appl., Birkh 646user, Boston, 34. }
  18. [18]  { Rassias, T.M. (1978), On the stability of the linear mapping in Banach spaces,\ Proc. Amer. Math. Soc., 72(2), 297--300. }
  19. [19]  { da Sousa, J.V.C., and de Oliveira, E.C. (2018), On the $\psi $-Hilfer fractional derivative.\ Commun. Nonlinear Sci. Numer. Simul., 60, 72--91. }
  20. [20]  Abbas, S. Benchohram, M., Graef, J.R. and Henderson, J. (2018), Implicit fractional differential and integral equations: existence and stability, Walter de Gruyter GmbH $\&$ Co KG. 26.
  21. [21]  { Abdo, M.S. and Panchal, S.K. (2019), Fractional integro-differential equations involving $\psi $-Hilfer fractional derivative, Advances in Applied Mathematics and Mechanics, 11, 338-359. https://doi.org/10.4208/ aamm.OA-2018-0143. }
  22. [22]  { Abdo, M.S. Panchal, S.K., and Shafei, H.H. (2019), Fractional integro-differential equations with nonlocal conditions and $\psi $--Hilfer fractional derivative,\ Mathematical Modelling and Analysis% , 24(4), 564-584. https://doi.org/10.3846/mma.2019.034. }
  23. [23]  { Harikrishnan, S., Shah, K., Baleanu, D., and Kanagarajan, K. (2018), Note on the solution of random differential equations via $\psi $-Hilfer fractional derivative, Advances in Difference Equations, 1, 224. }
  24. [24]  { Kucche, K.D., Mali, A.D., and Sousa, VJ.C. (2018), Theory of Nonlinear $\psi $-Hilfer Fractional Differential Equations, arXiv preprint arXiv:1808.01608. }
  25. [25]  { Liu, K., Wang, J., and O'Regan, D. (2019), Ulam--Hyers--Mittag-Leffler stability for $\psi $-Hilfer fractional-order delay differential equations, Advances in Difference Equations, 1,\ 50. }
  26. [26]  { Shah, K., Ali, A., and Bushnaq, S. (2018), Hyers--Ulam stability analysis to implicit Cauchy problem of fractional differential equations with impulsive conditions.\ Math. Methods Appl. Sci., 41, 8329--8343. }
  27. [27]  { Vivek, D., Elsayed, E., and Kanagarajan, K. (2018), Theory and analysis of $\psi $-fractional differential equations with boundary conditions, Communications in Applied Analysis, 22, 401-414. }
  28. [28]  { Wang, J., Zhou, Y., and Fe\^{c}kan, Y.M. (2012), Nonlinear impulsive problems for fractional differential equations and Ulam stability,\ Comput. Math. Appl. 64, 3389--3405. }
  29. [29]  { Otrocol, D. and Ilea, V. (2013), Ulam stability for a delay differential equation, Cent. Eur. J. Math., 11, 1296--1303. }
  30. [30]  { Wang, J. and Zhang, Y. (2014), Ulam--Hyers--Mittag-Leffler stability of fractional-order delay differential equations, Optimization, 63(8), 1181-1190. }
  31. [31]  { da Sousa, J.V.C., and de Oliveira, E.C.. (2018), A Gronwall inequality and the Cauchy-type problem by means of $\psi -$Hilfer operator,\ arXiv preprint arXiv:1709.03634. }