Skip Navigation Links
Journal of Applied Nonlinear Dynamics
Miguel A. F. Sanjuan (editor), Albert C.J. Luo (editor)
Miguel A. F. Sanjuan (editor)

Department of Physics, Universidad Rey Juan Carlos, 28933 Mostoles, Madrid, Spain

Email: miguel.sanjuan@urjc.es

Albert C.J. Luo (editor)

Department of Mechanical and Industrial Engineering, Southern Illinois University Ed-wardsville, IL 62026-1805, USA

Fax: +1 618 650 2555 Email: aluo@siue.edu


Stability Analysis and Parameter Classification of a Reaction-Diffusion Model on an Annulus

Journal of Applied Nonlinear Dynamics 9(4) (2020) 589--617 | DOI:10.5890/JAND.2020.12.006

Wakil Sarfaraz , Anotida Madzvamuse

Institute of Cancer and Genomic Sciences, Centre for Computational Biology, University of Birmingham, Edgbaston, B15 2TT, UK

Download Full Text PDF

 

Abstract

This work explores the influence of domain-size on the evolution of pattern formation modelled by an \textit{activator-depleted} reaction-diffusion system on a flat-ring (annulus). A closed form expression is derived for the spectrum of the Laplace operator on the domain. Spectral method is used to depict the close form solution on the domain. The bifurcation analysis of \textit{activator-depleted} reaction-diffusion system is conducted on the admissible parameter space under the influence of domain-size. The admissible parameter space is partitioned under a set of proposed conditions relating the reaction-diffusion constants with the domain-size. Finally, the full system is numerically simulated on a two dimensional annular region using the standard Galerkin finite element method to verify the influence of the analytically derived domain-dependent conditions.

Acknowledgments

WS acknowledges support of the School of Mathematical and Physical Sciences Doctoral Training studentship. AM acknowledges support from the Leverhulme Trust Research Project Grant (RPG-2014-149) and the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 642866. AM's work was partially supported by the Engineering and Physical Sciences Research Council, UK grant (EP/J016780/1). The authors (WS, AM) thank the Isaac Newton Institute for Mathematical Sciences for its hospitality during the programme (Coupling Geometric PDEs with Physics for Cell Morphology, Motility and Pattern Formation; EPSRC EP/K032208/1). AM was partially supported by a fellowship from the Simons Foundation. AM is a Royal Society Wolfson Research Merit Award Holder, generously supported by the Wolfson Trust.

References

  1. [1] Turing, A.M. (1952), The chemical basis of morphogenesis, { Philos. Trans. R. Soc. Lond.}, 237, 37-72.
  2. [2]  Chaplain, M.A.J., Ganish, M., and Graham, I.G. (2001), Spatio-temporal pattern formation on spherical surfaces: Numerical and application to solid tumour growth, { J. Math. Biol.}, 42, 387-432.
  3. [3]  Madzvamuse, A. and Chung, A.H.W.(2015), The bulk-surface finite element method for reaction-diffusion systems on stationary volumes, J. FE in Analysis and Design., 108, 1-21.
  4. [4]  Madzvamuse, A. and Chung, A.H.W. (2014), Fully implicit time-stepping schemes and non-linear solvers for systems of reaction-diffusion equations, J. App. Math. Comp., 244, 361-374.
  5. [5]  Ghorai, S. and Poria, S. (2016), Turing pattern induced by cross-diffusion in a predator-prey system in presence of habitat complexity, J. Chaos. Solit. Fract., 91, 421-429.
  6. [6]  Madzvamuse, A. (2008), Stability analysis of reaction-diffusion systems with constant coefficients on growing domains Int. J. Dyn. Diff. Eq., 1(4), 250-262.
  7. [7] Barreira, R., Elliot, C.M., and Madzvamuse, A. (2011), The surface finite element method for pattern formation on evolving biological surfaces, J. Math. Biol., 63, 1095-1119.
  8. [8] Lakkis, O., Madzvamuse, A., and Venkataraman, C. (2014), Implicit-explicit timestepping with finite element approximation of reaction-diffusion systems on evolving domains, SIAM J. Num. Anal., 51(4), 2309-2330.
  9. [9]  Madzvamuse, A. (2006), Time-stepping schemes for moving finite elements applied to reaction-diffusion systems on fixed and growing domains J. Comp. Phys., 214, 239-263.
  10. [10]  Thomee, V. and Wahalbin, L. (1975), On Galerkin methods in semilinear parabolic problems, SIAM J. Num. Anal., 12(3), pp.378-389.
  11. [11] Bonito, A., Kyza, I., and Nochetto, R. (2013), Time-discrete higher-order ALE formulations: Stability, SIAM J. Num. Anal., 51(1), 577-604.
  12. [12] Estep, D.J., Lasron, M.G., and Williams, R.D. (2000), Estimating the error of numerical solutions of systems of reaction-diffusion equations, A. Math. Soc., 146(396), DOI: 10.1090/memo/0696.
  13. [13]  A.Madzvamuse, H.S.Ndakwo \& R.Barreira (2016) Stability analysis of reaction-diffusion models on evolving domains: The effect of cross-diffusion Discr. Cont. Dyn. Sys. 36(4), pp.2133-2170.
  14. [14]  Madzvamuse, A. and Maini, P.K. (2007), Velocity-induced numerical solutions of reaction-diffusion systems on continuously growing domains, J. Comp. Phys., 225, 100-119.
  15. [15]  Sarfaraz, W. and Madzvamuse, A. (2017), Classification of parameter spaces for a reaction-diffusion model on stationary domains, Cha. Solit. $\&$ Fract., 103, 33-51.
  16. [16]  Sarfaraz, W. and Madzvamuse A. (2018), Domain-dependent stability analysis and parameter classification of a reaction-diffusion model on circular geometries, Accepted in Int. J. Bif. Chao.
  17. [17]  Gierer, A. and Meinhardt, H. (1972), A Theory of Biological Pattern Formation, Kybernetik, 12(1), 30-39.
  18. [18]  Henry, B.I. and Wearne, S.L. (2007), Existence of Turing instabilities in a two-species fractional reaction-diffusion system, J. Comp. Phys., 62(3), 870-887.
  19. [19]  Kim, M., Bertram, M., Pollmann, M., Oertzen, A.V., Mikhialov, A.S., and Rotermund, H.H. (2001), Controlling chemical turbulance by global delayed feedback: Pattern formation in catalytic CO oxidation on Pt(110) Science, 5520, 891-921.
  20. [20]  Lee, K.J., McCormick, W.D., and Pearson, J.E. (1994), Experimental observation of self-replicating spots in a reaction-diffusion system, Nature, 369, 215-218.
  21. [21]  Murray, J.D. (2013), Mathematical Biology { Spatial Models and Biomedical Applications} { 5}th. ed, Springer New York.
  22. [22]  Liu, P., Shi, J., Wang, Y., and Feng, X. (2013), Bifurcation analysis of reaction-diffusion Schnakenberg model, Math. Chem., 51, 2001-2019.
  23. [23]  Madzvamuse, A., Chung, A.H.W., and Venkataraman, C. (2015), Stability analysis and simulations of bulk-surface reaction-diffusion systems, Proc. R. Soc. A., 472(10), 891-921.
  24. [24]  Maini, P.K. and Myerscough, M.R. (1997), Boundary-driven instability, J. Appl. Math. Lett, 10(1), 1-4.
  25. [25]  Campillo-Funollet, E., Venkataraman, C., and Madzvamuse, A. (2016), A Bayesian approach to parameter identification with an application to Turing systems DOI:arXiv:1605.04718 (q-bio.QM).
  26. [26]  Iron, D., Wei, J., and Winter, M. (2003), Stability analysis of Turing patterns generated by the Schnakenberg model, Jour. Math. Biol., 49(4), pp.358-390.
  27. [27]  Schnakenberg, J. (1979), Simple chemical reaction systems with limit cycle behaviour, J. Theor. Biol., 81, 389-400.
  28. [28]  Madzvamuse, A., Gaffney, E.A., and Maini, P.K. (2010), Stability analysis of non-autonomous reaction-diffusion systems: the effect of growing domains, J. Math. Biol., 61, 133-164.
  29. [29]  Fengji, Y., Junjie, W., and Junping, S. (2009), Bifurcation and spatiotemporal patterns in a homogeneous diffusive predator-prey system, J. Diff. Eqs., 246, 1944-1977.
  30. [30]  Dimitriu, G. and Stefanescu, R. (2008), Numerical Experiments for Reaction-Diffusion Equations Using Exponential Integrators, Int. Conf. Num. Anal. App., 16, pp. 249-256.
  31. [31]  Gafiychuk, V. and Datsko, B.(2007), Stability analysis and oscillatory structures in time-fractional reaction-diffusion systems Phys. Rev., E (75), 055201(R).
  32. [32]  Gafiychuk, V. and Datsko, B. (2012), Different types of instabilities and complex dynamics in reaction-diffusion systems with fractional derivatives, J. Comp. Nonlin. Dynam., 7(3), 031001.
  33. [33] Datsko, B. and Gafiychuk, V. (2018), Complex spatio-temporal solutions in fractional reaction-diffusion systems near a bifurcation point { Fract. Calc. Appl. Anal.}, 21, pp.237-253.
  34. [34]  Brown, A.G. and and Weber, H.J. (2001), Mathematical Methods for Physicists { 5}th. ed, Harcourt Academic Press, USA.
  35. [35]  Li, L. (2007), On the second eigenvalue of the laplacian in an annulus, Illinois J. of Mathematics, 51(3), 913-925.
  36. [36]  Neuringer, J.L. (2014), On the second eigenvalue of the laplacian in an annulus Int. J. of Math. Edu in Sc and Tech 9(1), pp.71-77.
  37. [37]  Spanier, J. and Oldham, K.B. (1987), { An Atlas of Functions}, Springer Verlag, Washington, USA.
  38. [38]  Thomson, B.S. and Bruckner, A.M. (2008), Elementary Real Analysis; 2nd Ed. CreateSpace; Online Journal.
  39. [39]  Trefethen, L.N. (2000), { Spectral Methods in Matlab}, Philadelphia. Pa. USA. (SIAM), DOI: 10.1137/ 1.9780898719598.
  40. [40]  Lebedev, N.N. (1965), Special functions and applications, SIAM Rev., 7(4), 577-580.
  41. [41]  Qian, T. and Wegert, E. (2013), Optimal approximation by blaschke forms, Compl. Var. $\&$ Ell. Eqn., 58(1), 122-133, DOI: 10.1137/1007133.
  42. [42] Keshet, L.E. (2005), Mathematical Models in Biology, { Classics in Applied Mathematics}, Philadelphia. Pa. USA. (SIAM).
  43. [43]  Perko, L. (1996) Differential Equations and Dynamical Systems, { 2}nd. ed, Springer, New York.
  44. [44] Baines, M.J. (1994), Moving Finite Elements, { Monographs on Numerical Analysis}, Ox. Sc. Pub. UK.
  45. [45] Larson, M.G. and Bengzon, F. (2013), The Finite Element Method, { Theory, Implementation and Application: Texts in Computational Science and Engineering}, Springer. Verlag. Berlin Heidelberg.
  46. [46]  Madzvamuse, A., Maini, P.K., and Wathen, A.J. (2005), A moving grid finite element method for the simulation of pattern generation by Turing models on growing domains, J. Sc. Comp., 24(2), DOI: 10.1007/s10915-004-4617-7.
  47. [47]  Madzvamuse, A., Maini, P.K., and and Wathen, A.J. (2003), A moving grid finite element method applied to a model biological pattern generator, J. Comp. Phys., 190, 478-500.
  48. [48]  Schnepf, A. and Leitner, D. (2009), FEM simulation of below ground processes on a 3-dimensional root system geometry using Distmesh and COMSOL Multiphysics, Proc. Algoritmy., 18, 321-330.
  49. [49] Smith, I.M. and Griffiths, D.V. (1988) Programming the Finite Element Method.Second Edition: { Finite Element Method and Data Processing}, John Wiley \& Sons Ltd. New York.
  50. [50]  Strang, G. and Persson, P.O. (2004), A simple mesh generator in Matlab, SIAM Rev., 46, 329-345.
  51. [51]  Lee, D.T. and Schachter, B.J. (2001), Two algorithms for constructing delaunay triangulation, Int. J. Comp. Inf. Sci., 9(3), 219-242.
  52. [52] Erneux, T. and Nicolis, G. (1993), Propagating waves in discrete bistable reaction-diffusion systems, Physica. D. North-Holl., 67, 237-244.
  53. [53] Huang, W. and Russell, R.D. (2011), Adaptive Moving Mesh Methods: { Applied Mathematical Sciences}, { 174}, Springer. Verlag, New York.
  54. [54] Lengyel, I. and Epstein, I.R. (1992), A chemical approach to designing Turing pattern in reaction-diffusion systems, Proc. Natl. Acad. Sci. USA., 89, 3977-3979.
  55. [55]  Mackenzie, J.A. and Madzvamuse, A. (2009) Analysis of stability and convergence of finite difference method for a reaction-diffusion problem on a one dimensional growing domain, J. Num. Anal., 322(10), pp.891-921.
  56. [56]  Madzvamuse, A. (2000), { A numerical approach to the study of spatial pattern formation}, Ph.D. thes. Math. Inst. University of Oxford, UK.
  57. [57]  Persson, P. (2005), Mesh generation for implicit geometries PhD. Thes. M. I. T.
  58. [58]  P{o}lya, S. (1925), Aufgaben und Lehrsatze aus der Analysis Berlin, Springer, 1, 106-139.
  59. [59]  Robert, M. (2001), Fundamental theorem of algebra Form. Math., 9(3), 461-470.
  60. [60] Schwarz, H.A. (1869), \"{U}ber einige Abbildungsaufgaben, J. f\"{ur die reine und angew. Mathematik}, 70, 105-120.