Skip Navigation Links
Journal of Applied Nonlinear Dynamics
Miguel A. F. Sanjuan (editor), Albert C.J. Luo (editor)
Miguel A. F. Sanjuan (editor)

Department of Physics, Universidad Rey Juan Carlos, 28933 Mostoles, Madrid, Spain

Email: miguel.sanjuan@urjc.es

Albert C.J. Luo (editor)

Department of Mechanical and Industrial Engineering, Southern Illinois University Ed-wardsville, IL 62026-1805, USA

Fax: +1 618 650 2555 Email: aluo@siue.edu


Dynamic Scenario in HTLV-I Infection

Journal of Applied Nonlinear Dynamics 9(3) (2020) 349--359 | DOI:10.5890/JAND.2020.09.002

Romina Cobiaga, Walter Reartes

Departamento de Matemática, Universidad Nacional del Sur, Av. Alem 1253, 8000 Bahía Blanca, Buenos Aires, Argentina

Download Full Text PDF

 

Abstract

In this article we present a model that describes the emerging dynamic scenario of infection with the human T-cell lymphotropic virus (HTLV-I). In this model we incorporate the phase of latency in the infection of the CD4+ lymphocytes, the immune response mediated by CD8+ T lymphocytes and the possible appearance of adult T-cell leukemia (ATL). The proposed model is a six-dimensional, non-linear system of ordinary differential equations that describes the dynamic interactions among different cell types. Several types of biological implications are discussed.

Acknowledgments

We thank Ana Torresi for her help with this manuscript. Her useful comments and discussions are always greatly appreciated. The work is supported by the Universidad Nacional del Sur (Grant no.PGI 24/L096).

References

  1. [1]  Verdonck, K.,González, E., Van Dooren, S., Vandamme, A.M., Vanham, G., and Gotuzzo, E. (2007), Human T-lymphotropic virus 1: recent knowledge about an ancient infection, The Lancet infectious diseases, 7(4), 266-281.
  2. [2]  Bangham, C.R.M. and Ratner, L. (2015), How does HTLV-1 cause adult T-cell leukaemia/lymphoma (ATL)? Current opinion in virology, 14, 93-100.
  3. [3]  Kogure, Y. and Kataoka, K. (2017), Genetic alterations in adult T-cell leukemia/lymphoma, Cancer science, 108(9), 1719-1725.
  4. [4]  Semmes, O.J. (2006), Adult t cell leukemia: a tale of two t cells, The Journal of clinical investigation, 116(4), 858-860.
  5. [5]  Moore, G.R.W., Traugott, U., Scheinberg, L.C., and Raine, C.S. (1989), Tropical spastic paraparesis: A model of virus-induced, cytotoxic T-cell–mediated demyelination?, Annals of Neurology: Official Journal of the American Neurological Association and the Child Neurology Society, 26(4), 523-530.
  6. [6]  Wodarz, D. (2007), Killer cell dynamics: mathematical and computational approaches to immunology, Vol. 32, Springer: New York.
  7. [7]  Stilianakis, N.I. and Seydel, J. (1999), Modeling the T-cell dynamics and pathogenesis of HTLV-I infection, Bulletin of Mathematical Biology, 61, 935-947.
  8. [8]  Asquith, B. and Bangham, C.R.M. (2003), An introduction to lymphocyte and viral dynamics: the power and limitations of mathematical analysis, Proc. R. Soc. Lond. B, 270, 1651-1657.
  9. [9]  Chan, B.S. and Yu, P. (2012), Bifurcation analysis in a model of cytotoxic T-lymphocyte response to viral infections, Nonlinear Analysis: Real World Applications, 13, 64-77.
  10. [10]  G¨okdogan, A. and Merdan, M. (2011), A multistage Homotopy Perturbation Method for solving human T-cell Lynphotropic Virus I (HTLV-I) infection of CD4+ T-cells model, Middle East Journal of Scientific Research, 9(4), 503-509.
  11. [11]  Katri, P. and Ruan, S. (2004), Dynamics of human T-cell lymphotropic virus I (HTLV-I) infection of CD4+ T-cells, C. R. Biologies, 327, 1009-1016.
  12. [12]  Li, M.Y. and Shu, H. (2012), Global dynamics of a mathematical model for HTLV-I infection of CD4+ T cells with delayed CTL response, Nonlinear Analysis: Real World Applications, 13(3), 1080-1092.
  13. [13]  Li, S. and Jia, J. (2018), The dynamics of an HTLV-1 system with cell-mediated immune response, In 2018 5th International Conference on Systems and Informatics (ICSAI), 638-643, IEEE.
  14. [14]  Lim, A.G. and Maini, P.K. (2014), HTLV-I infection: A dynamic struggle between viral persistence and host immunity, Journal of Theoretical Biology, 352, 92-108.
  15. [15]  Perelson, A.S., Kirschner, D.E., and deBoer, R. (1993), Dynamics of HIV infection of CD4+ cells, Mathe- matical Biosciences, 114, 81-125.
  16. [16]  Perelson, A.S. and Ribeiro, R.M. (2013), Modeling the within-host dynamics of HIV infection, BMC Biology, 11.
  17. [17]  Wang, L. and Li, M.Y. (2006), Mathematical analysis of the global dynamics of a model for HIV infection of CD4+ T cells, Mathematical Biosciences, 200, 44-57.
  18. [18]  Kozako, T., Arima, N., Toji, S., Masamoto, I., Akimoto, M., Hamada, H., Che, X., Fujiwara, H., Matsushita, K., Tokunaga, M., Haraguchi, K., Uozumi, K., Suzuki, S., Takezaki, T., and Sonoda, S. (2006), Reduced frequency, diversity, and function of human T cell leukemia virus type 1-specific CD8+ T cell in adult T cell leukemia patients, The Journal of Immunology, 177, 5718-5726.
  19. [19]  Bangham, C.R.M. (2003), The immun1e control and cell-to-cell spread of human T-lymphotropic virus type 1, Journal of General Virology, 84(12), 3177-3189.
  20. [20]  Hanon, E., Stinchcombe, J.C., Saito, M., Asquith, B.E., Taylor, G.P., Tanaka, Y., Weber, J.N., Griffiths, G.M., and Bangham, C.R.M. (2000), Fratricide among CD8+ T lymphocytes naturally infected with human T cell lymphotropic virus type I, Immunity, 13(5), 657-664.
  21. [21]  Earn, D.J.D., Brauer, F., vanden Driessche, P., and Wu, J. (2008), Mathematical epidemiology, Springer: New York.
  22. [22]  Vanden Driessche, P., andWatmough, J. (2002), Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Mathematical biosciences, 180(1-2), 29-48.
  23. [23]  Lang, J. and Li, M.Y. (2012), Stable and transient periodic oscillations in a mathematical model for CTL response to HTLV-I infection, Journal of Mathematical Biology, 65(1), 181-199.
  24. [24]  Li, M.Y. and Lim, A.G. (2011), Modelling the role of tax expression in HTLV-I persistence in vivo, Bulletin of Mathematical Biology, 73(12), 3008-3029.
  25. [25]  Drobnjak, I. and Fowler, A.C. (2011), A model of oscillatory blood cell counts in chronic myelogenous leukaemia, Bulletin of mathematical biology, 73(12), 2983-3007.
  26. [26]  Fortin, P. and Mackey, M. (1999), Periodic chronic myelogenous leukaemia: spectral analysis of blood cell counts and aetiological implications, British journal of haematology, 104(2), 336-345.
  27. [27]  Matutes, E. (2007), Adult T-cell leukaemia/lymphoma, Journal of clinical pathology, 60(12), 1373-1377.
  28. [28]  Dritschel, H., Waters, S.L., Roller, A., and Byrne, H.M.(2018), A mathematical model of cytotoxic and helper T cell interactions in a tumour microenvironment, Letters in Biomathematics, 5(sup1), S36-S68.
  29. [29]  Liu, D.,Ruan, S., and Zhu, D. (2012), Stable periodic oscillations in a two-stage cancer model of tumor and immune system interactions, Mathematical Biosciences and Engineering, 9(2), 347-368.