Skip Navigation Links
Journal of Applied Nonlinear Dynamics
Miguel A. F. Sanjuan (editor), Albert C.J. Luo (editor)
Miguel A. F. Sanjuan (editor)

Department of Physics, Universidad Rey Juan Carlos, 28933 Mostoles, Madrid, Spain


Albert C.J. Luo (editor)

Department of Mechanical and Industrial Engineering, Southern Illinois University Ed-wardsville, IL 62026-1805, USA

Fax: +1 618 650 2555 Email:

Dynamical Complexity and Numerical Bifurcation Analysis of a Reaction-Diffusion Predator-Prey System

Journal of Applied Nonlinear Dynamics 9(2) (2020) 323--337 | DOI:10.5890/JAND.2020.06.012

Z. Lajmiri$^{1}$, I. Orak$^{1}$, R. Khoshsiar$^{2}$, P. Azizi$^{3}$

$^{1}$ Sama technical and vocatinal training college Islamic Azad University Izeh Branch, Izeh, Iran

$^{2}$ Department of Applied Mathematics and Computer Sciences, Shahrekord University, P.O. Box 115, Shahrekord, Iran

$^{3}$ Student of Applied Mathematics, Shahrekord University, P.O. Box 115, Shahrekord, Iran

Download Full Text PDF



In this paper, we consider a diffusive predator-prey system with modified Holling-Tanner functional response under homogeneous Neumann boundary condition . Dynamics of the system is very sensitive to the variation of the initial conditions. We determine stability and dynamical behaviors of the equilibrium of this system. The dynamical behaviors consist of Andronov-Hopf bifurcation, limit cycles and Bogdanov-Takens bifurcations. Numerical simulation results are given to support our theoretical results.


  1. [1]  Banerjee, M. and Banerjee, S. (2012), Turing instabilities and spatiotemporal chaos in ratio-dependent Holling-Tanner model, Math. Biosci, 236, 64-76.
  2. [2]  Murray, J.D. (1996), Differential Equations and Dynamical Systems, Springer-Verlag, New York.
  3. [3]  Skalski, G. and Gilliam, J.F. (2001), Functional responses with predator interference: viable alternatives to the Holling type II model, Ecology, 82, 3083-3092.
  4. [4]  Chakraborty, S. and Pal, S., and Bairagi, N. (2012), Predator-prey interaction with harvesting: mathematical study with biological ramifications, Appl. Math. Model.
  5. [5]  Lan, K.Q. and Zhu, C.R. (2012), Phase portraits of predator-prey systems with harvesting rates, Discrete Contin. Dyn. Syst. Ser. A, 32(3), 901-933.
  6. [6]  Lan, K.Q. and Zhu, C.R. (2011), Phase portraits Hopf bifurcations and limit cycles of the Holling-Tanner models for predator-prey interactions, Nonlinear Anal, Signal Processing, Real World Appl., 12, 1961-1973.
  7. [7]  Lenzini, P. and Rebaza, J. (2010), Nonconstant predator harvesting on ratio-dependent predator-prey models, Appl. Math. Sci., 4(16), 791-803.
  8. [8]  Luo, G.P., Lan, K.Q., and Zhu, C.R. (2014), Bifurcations of ratio-dependent predator-prey Holling type III systems with harvesting rates, J. Nonlinear Funct., Anal, Article ID 16.
  9. [9]  Perko, L. (1989), Mathematical Biology, Springer, Berlin (1989).
  10. [10]  Hu, G., Li, X., and Wang, Y. (2015), Pattern formation and spatiotemporal chaos in a reaction-diffusion predator-prey system, Nonlinear Dyn.
  11. [11]  Segel, L.A. and Jackson, J.L. (1972), Dissipative structure: an explanation and an ecological example, J.Theor. Biol., 37, 545-559.
  12. [12]  Mukhopadhyay, B. and Bhattacharyya, R. (2006), Modeling the role of diffusion coefficients on Turing instability in a reaction-diffusion prey-predator system, Bull. Math. Biol., 68, 293-313.
  13. [13]  Sherratt, J.A., Eagan, B.T., and Lewis,M.A. (1997), Oscillations and chaos behind predator-prey invasion, mathematical artifact or ecological reality? Philos. Trans. R. Soc. Lond. Ser. B, 352, 21-38.
  14. [14]  Sun, G.Q., Jin, Z., Zhao, Y.G., Liu, Q.X., and Li, L. (2009), Spatial pattern in a predator-prey system with both self-and crossdiffusion, Int. J. Mod. Phys. C, 20, 71-84.
  15. [15]  Hu, G., Li, X., and Wang,Y. (2015), Pattern formation and spatiotemporal chaos in a reaction diffusion predator-prey system, Nonlinear Dynamics, 81, 265-275.
  16. [16]  Liu, M., Xu, X., and Zhang, C. (2014), Stability and global Hopf bifurcation for neutral BAM neural network, Neurocmputing, 145, 122-130.
  17. [17]  Mendoza-Armenta, S., Fuerte-Esquivel, C., and Becerril, R. (2013), Anumerical study of the effect of de- generate Hopf bifurcations on the voltage stability in power systems, Electric Power Systems Research, 101, 102-109.
  18. [18]  Pogan, A., Yao, J., and Zumbrun, K. (2015), O(2)Hopf bifurcation of viscous shock waves in a channel, Physica D: Nonlinear Phenomena, 308, 59-79.
  19. [19]  Tang, H. and Liu, Z. (2016), Hopf bifurcations for a predator-prey model with age structure, J. Appl. Math. Model, 40, 726-737.
  20. [20]  Velayati, M.H., Amjadi, N., and Khajevandi, I. (2015), Prediction of dynamic voltage stability status based on Hopf and lilit induced bifurcations using extreme learning machine, International Journal of ElectricalPower Systems, 69, 150-159.
  21. [21]  Zhang, X., Zhang, Q.L., and Zhang, Y. (2019), Bifurcation of a class of singular biological economic models, Chaos. Solitons. Fractals, 40, 1309-1318.
  22. [22]  Freedman, H.I. (1980), It Deterministic Mathematical Models in Population Ecology, Marcel Dekker, New York.
  23. [23]  Agarwal, M. and Pathak, R. (2012), Harvesting and hopf bifurcation in a preypredator model with Holling type IV functional response, International Journal of Mathematics and Soft Computing, 2(1), pp.83-92
  24. [24]  Chen, S., Shi, J., and Wei, J. (2012), Global stability and hopf bifurcation in a delayed diffusive Leslie-gower predator-prey system International journal of bifurcation and chaos, 22(3), 1-11.
  25. [25]  Gao, Y. (2013), Dynamics of a ratio-dependent predator-prey system with a strong Allee effect, Discrete and Continuous Dynamical Systems series B, 18(9), 2283-2313.
  26. [26]  Lu, H. and Wang, W. (2011), Approximate solutions of nonlinear, non-autonomous second-order differential equations, Dynamics of a delayed discrete semi-ratio dependent predator-prey system with Holling type IV functional response, Advances in difference equations, pp.3-19.
  27. [27]  Wei, H.C. (2014), Numerical analysis of periodic solutions and bifurcations in the planetary annulus problem, Applied Mathematics and Computation, 236, 373-383.
  28. [28]  Zhang, T. and Gan, X. (2013), Existence and permanence of almost periodic solutions for Leslie-Gower predator-prey model with variable delays, Electronic Journal of Differential Equations, (105), 1-21.
  29. [29]  Zhang, W., Liu, H., and Xu, C. (2013), Bifurcation analysis for a Lesliegower predator-prey system with time delay, International Journal of Nonlinear Science, 15(1), 35-44.
  30. [30]  Allgower, E.L. and Georg, K. (1990), Numerical continuation methods: an introduction, Springer-Verlag, Berlin.
  31. [31]  Remonato, F. and Kalisch, H. (2017), Numerical bifurcation for the capillary whitham equation, Physica D: Nonlinear Phenomena, 342, 51-62.
  32. [32]  HSu, S.B. and Huang, T.W. (1995), Global stability for a class of predator-prey systems, SIAM J. Appl. Math., 55, 763-783.
  33. [33]  Jeschke, J., Kopp, M., and Tollrian , R. , (2002), Predator functional responses: discriminating between handling and digesting prey, Ecol. Monogr., 72, 95-112.
  34. [34]  Johri, A., Trivedi, N., Sisodiya, A., Sing, B., and Jain, S. (2012), Study of a prey-predator model with diseased prey, Int. J. Contemp. Math. Sciences, 7(10), 489-498.