Skip Navigation Links
Journal of Applied Nonlinear Dynamics
Miguel A. F. Sanjuan (editor), Albert C.J. Luo (editor)
Miguel A. F. Sanjuan (editor)

Department of Physics, Universidad Rey Juan Carlos, 28933 Mostoles, Madrid, Spain

Email: miguel.sanjuan@urjc.es

Albert C.J. Luo (editor)

Department of Mechanical and Industrial Engineering, Southern Illinois University Ed-wardsville, IL 62026-1805, USA

Fax: +1 618 650 2555 Email: aluo@siue.edu


Controlling of the Quantum Dot LED Dynamics with a Small Optical Feedback Strength

Journal of Applied Nonlinear Dynamics 9(1) (2020) 57--70 | DOI:10.5890/JAND.2020.03.006

Hussein A. Al Rekabie$^{1}$, Hussein B. Al Husseini$^{2}$

$^{1}$ Dept. of Physics, College of Science, University of Thi-Qar, Nassiriya, Iraq

$^{2}$ Nassiriya Nanotechnology Research Laboratory (NNRL), Science College, University of Thi-Qar, Nassiriya, Iraq

Download Full Text PDF

 

Abstract

In this work a four-variable dimensionless model of a quantum dot light emitting diode (QDLED) under optical feedback effect is studied. The bifurcations of these dynamics is fully determined by the increasing the optical feedback strength OFBS. Our results show that small OFBS leads to a selection of QDLED dynamics. Increasing of the τ leads to increase both in region of the double period and the chaos. Otherwise, bias dominates the course of photons. Adding the grating mirror as a special technique stabilize the oscillation of a QDLED. It is worth mentioning that we did not get a perfect behavior except using this technique. Delayed feedback and turn-on dynamics are studied. Results show that there is no change QDLED dynamics because of controlling the bias current on the behavior of photons and the effect of delay forces the system to enter the state of chaos while the turn-on dynamics of the QDLED structure show damping of the relaxation oscillations and the increase of phase shift with increasing both of OFBS and delay time. Dependence the outset of chaos on the linewidth enhancement factor is examined.

References

  1. [1]  Al Naimee, K., Al Husseini, H., Abdalah, S.F., Al Khursan, A., Khedir, A.H., Meucci, R., and Arecchi, F.T. (2015), Mixed mode oscillations and chaotic spiking in Quantum Dot Light Emitting Diodes, Proceedings of the IEEE, 07, 033.
  2. [2]  Al Husseini, H., Al Naimee, K., Abdalah, S.F., Al Khursan, A., Khedir, A.H., Meucci, R., and Arecchi, F.T. (2015), Modulation Response, Mixed mode oscillations and chaotic spiking in Quantum Dot Light Emitting Diodes, Elsevier, Chaos, Solitons & Fractals, Nonlinear Science, and Nonequilibrium and Complex Phenomena, 78, 229–237.
  3. [3]  Al Naimee, K., Al Husseini, H., Abdalah, S.F., Al Khursan, A., Khedir, A.H., Meucci, R., and Arecchi, F.T. (2015), Complex dynamics in Quantum Dot Light Emitting Diodes, Eur. Phys. J. D, 69(257), 1-5.
  4. [4]  Bertram, M. and Mikhailov, A.S. (2001), pattern formation in a surface chemical reaction with globlal delayed feedback, Phys. Rev. E, 63, 066102.
  5. [5]  Azouigui, S., Dagens, B., Lelarge, F., Provost, J.G., Make, D., Le Gouezigou, O., Accard, A., Martinez, A., Merghem, K., Grillot, F., Dehaese O., Piron, R., Loualiche, S., Zou, Q., and Ramdane, A. (2009), Optical feedback tolerance of quantum-dot- and quantum-dash-based semiconductor lasers operating at 1:55m, IEEE J. Sel. Topics Quantum Electron, 15, 764.
  6. [6]  Lang, R. and Kobayashi, K. (1980), Lang Kobayashi Laser Equations, IEEE J. Quantum Electron, 16, 347.
  7. [7]  Ohtsubo, J. (2008), Semiconductor Lasers Stability, Instability and chaos, Springer Series in optical sciences: 2nd Edition Springer-Verlag Berlin Heidelberg.
  8. [8]  Fan, S., Villeneuve, P.R., and Joannopoulos, J.D. (2000), Rate-equation analysis of output efficiency and modulation rate of photonic-crystal light-emitting diodes, IEEE journal of quantum electronics, 36, 10.
  9. [9]  Al Husseini, H.B., Al Naimee, K.A., Al-Khursan, A.H., and Khedir, A.H. (2016), External modes in quantum dot light emitting diode with filtered optical feedback Journal of Applied Physics, 119, 224301.
  10. [10]  Gardiner, C.W. (1985), Handbook of Stochastic Methods, Springer, Berlin, Heidelberg: New York.
  11. [11]  Yang, X., Ma, Y., Mutlugun, E., Zhao, Y., and Wei Sun, X. (2014), Stable, Efficient, and All-Solution- Processed Quantum Dot Light Emitting Diodes with Double-Sided Metal Oxide Nanoparticle Charge Transport Layers, ACS Applied Materials & Interfaces, 6, 495-499.
  12. [12]  O’Brien, D., Hegarty, S.P., and Huyet, G. (2004), Sensitivity of quantum-dot semiconductor lasers to optical feedback, Optics Letters, 29, 10.
  13. [13]  Globisch, B., Otto, C., Scholl, E., and Ludge, K. (2012), Influence of carrier lifetimes on the dynamical behavior of quantum-dot lasers subject to optical feedback, Physical Review E, 86, 4-2.
  14. [14]  Al Khursan, A.H., Ghalibb, B.A., and Al Obaidic, S.J. (2012), Numerical Simulation of Optical Feedback on a Quantum Dot Lasers, Physics of Semiconductor Devices, Semiconductors, 46(2), 213-220.