Skip Navigation Links
Journal of Applied Nonlinear Dynamics
Miguel A. F. Sanjuan (editor), Albert C.J. Luo (editor)
Miguel A. F. Sanjuan (editor)

Department of Physics, Universidad Rey Juan Carlos, 28933 Mostoles, Madrid, Spain


Albert C.J. Luo (editor)

Department of Mechanical and Industrial Engineering, Southern Illinois University Ed-wardsville, IL 62026-1805, USA

Fax: +1 618 650 2555 Email:

Numerical Bifurcation Analysis in 3D Kolmogorov Flow Problem

Journal of Applied Nonlinear Dynamics 8(4) (2019) 595--619 | DOI:10.5890/JAND.2019.12.007

N.M. Evstigneev, N.A. Magnitskii, O.I. Ryabkov

Federal Research Center "Computer Science and Control" of the Russian Academy of Sciences, 117312, pr. 60-letiya Oktyabrya, 9, Moscow, Russia

Download Full Text PDF



A three dimensional Kolmogorov problem with extended forcing term for Navier-Stokes equations is considered in the extended periodic domain. The Galerkin{Fourier method is applied and two problem congurations are considered: the symmetry preserving subset of solutions and the full set of solutions. The bifurcation patterns are revealed through the numerical analysis: the eigenvalues of the linearised perturbed system are analyzed (for stationary and periodic solutions) as well as the phase space trajectories that the system generates. Linear stability of the main solution is analyzed. For cubic domain we detected a fast transition to chaos through double Hopf bifurcation. Then the full bifurcation scenario is analyzed for rectangular parallelepiped with double side stretching. The initial stage of laminar-turbulent transition undergoes supercritical pitchfork bifurcation followed by subcritical Hopf bifurction. The system can either go through the series of cycles in Feigenbaum and Sharkovsky ordering or through the bifurcations on invariant tori up to the three and four dimensional tori. The transition to chaos goes either through the emergence of singular attractors of dimension greater than three or through the resonance of tori.


The work is supported by the Russian Foundation for Basic Research (grants RFBR 17-07-00116 and 18-29-10008mk).


  1. [1]  Evstigneev N.M. and Magnitskii N.A. (2017), Nonlinear dynamics of Laminar-Turbulent transition in generalized 3D Kolmogorov problem for incompressible viscous fluid at symmetric solution subset, Journal of Applied Nonlinear Dynamics, 6, 345-353
  2. [2]  Lucas, D. and Kerswell, R. (2017), Sustaining processes from recurrent flows in body-forced turbulence, J. Fluid Mech., 817, R3
  3. [3]  van Veen, L. and Goto, S. (2016), Sub critical transition to turbulence in three-dimensional Kolmogorov flow, Fluid Dyn. Res., 48, 061425
  4. [4]  Evstigneev, N.M. and Magnitskii, N.A. (2013), FSM Scenarios of Laminar-Turbulent Transition in Incompressible Fluids., Chapter 10 in Nonlinearity, Bifurcation and Chaos - Theory and Applications, INTECH, 250-280
  5. [5]  Arnold, V.I. and Meshalkin, L.D. (1959), The seminar of A.N. Kolmogorov on selected topics in analysis, Usp. Mat. Nauk, 15, 247-250.
  6. [6]  Meshalkin, L.D. and Sinai, Y.G. (1961), Investigation of the stability of a stationary solution of a system of equations for the plane movement of an incompressible viscous liquid, J.Appl. Math. and Mech., 25, 1700-1705.
  7. [7]  Batchaev, A.M. and Ponomarev, V.M. (1989), Experimental and theoretical investigation of Kolmogorov flow on a cylindrical surface, Fluid Dynamics, 24(5), 675-680.
  8. [8]  Bondarenko, N.F., Gak, M.Z., and Dolzhanskii, F.V. (1979), Laboratory and theoretical models of plane periodic flow, Akademiia Nauk SSSR, 15, 1017-1026.
  9. [9]  Obukhov, A.M. (1983), Kolmogorov flow and laboratory simulation of it, Russian Mathematical Surveys, 38(4), 113-126.
  10. [10]  Suri, B., Tithof, J., Mitchell, R.Jr., Grigoriev, R.O., and Schatz, M.F. (2014), Velocity profile in a two-layer Kolmogorov-like flow, Physics of Fluids, 26, 05360.
  11. [11]  Matsuda, M. (2005), Bifurcation of the Kolmogorov flow with an external friction, 2005, 29(1), 1-17.
  12. [12]  Nepomniashchii, A.A. (1976), On stability of secondary flows of a viscous fluid in unbounded space, Priklad- naia Matematika i Mekhanika, 40, 886-891.
  13. [13]  Okamoto, H. (1998), A study of bifurcation of Kolmogorov flows with an emphasis on the singular limit, Math., Proc. Int. Congress Math, 3, 523-532.
  14. [14]  Revina, S.V. and Yudovich, V.I. (2001), Initiation of Self-Oscillations at Loss of Stability of Spatially-Periodic, Three-Dimensional Viscous Flows with Respect to Long-Wave Perturbations, Fluid Dynamics, 36(2), 192- 203.
  15. [15]  Sivashinsky, G.I. (1985), Weak turbulence in periodic flows, Physica D: Nonlinear Phenomena, 17(2), 243- 255.
  16. [16]  Yudovich, V.I. (1967), An example of loss of stability and generation of a secondary flow in a closed vessel, Sbornik Mathematics, 116(4), 519-533.
  17. [17]  Chandler, G. and Kerswell, R. (2013), Invariant recurrent solutions embedded in a turbulent two-dimensional Kolmogorov flow, J.Fluid Mech., 722, 554-595.
  18. [18]  Evstigneev, N.M., Magnitskii, N.A., and Silaev, D.A. (2015), Qualitative analysis of dynamics in Kolmogorov problem on a flow of a viscous incompressible fluid, Diff. Eq., 51(10), 1292-1305.
  19. [19]  Lucas, D. and Kerswell, R. (2014), Spatiotemporal dynamics in two-dimensional Kolmogorov flow over large domains, J. Fluid Mech., 750, 518-554.
  20. [20]  Okamoto, H. and Shoji, M. (1993), Bifurcation diagrams in Kolmogorov's problem of viscous incompressible fluid on 2-D at tori, Japan J. Indust. Appl. Math., 10(191).
  21. [21]  Borue, V. and Orszag, S. (1996), Numerical study of three-dimensional Kolmogorov flow at high Reynolds numbers, J. Fluid Mech., 306, 293-323.
  22. [22]  Shebalin, J.V and Woodruff, S.L. (1997), Kolmogorov flow in three dimensions, Physics of Fluids, 9(1), 164-170.
  23. [23]  Sleijpen, G.L.G. and Fokkema D.R. (1993), BiCGStab(L) for linear equations involving unsymmetric matrices with complex spectrum, Electronic Transactions on Numerical Analysis, 1, 11-32.
  24. [24]  Rollin, B., Dubief, Y., and Doering, C.R. (2011), Variations on Kolmogorov flow: turbulent energy dissipation and mean flow profiles, J. Fluid Mech., 670, 204-213.
  25. [25]  Sarris, I.E., Jeanmart, H., Carati, D., and Winckelmans, G. (2007), Box-size dependence and breaking of translational invariance in the velocity statistics computed from three-dimensional turbulent Kolmogorov flows, Physics of Fluids, 19(9), 095101.
  26. [26]  Woodruff, S.L., Shebalin, J.V., and Hussaini, M.Y. (1999), Direct-numerical and Large-eddy Simulations of a Non-equilibrium Turbulent Kolmogorov Flow, NASA ICASE Report No. 99-45, 209727.
  27. [27]  Dijkstra, H.A., Wubs, F.W., Cliffe, A.K., Doedel, E., Dragomirescu, I.F., Eckhardt, B., Gelfgat, A.Yu., Hazel, A.L., Lucarini, V, Salinger, A.G., Phipps, E.T., Juan Sanchez-Umbria, Schuttelaars, H., Tuckerman, L.S., and Thiele, U. (2014), Numerical bifurcation methods and their application to fluid dynamics: analysis beyond simulation, Commun. Comput. Phys., 15(1), 1-45.
  28. [28]  Gelfgat, A.Yu. (2001), Two- and three-dimensional instabilities of confined flows: numerical study by a global Galerkin method, Computational Fluid Dynamics Journal (Special Issue, proc. of ISCFD'99), 9(1), 437-448.
  29. [29]  Tuckerman, L.S., Bertagnolio, F., Daube, O., Le Quere, P., and Barkley, D. (2000), Stokes preconditioning for the inverse Arnoldi method, Notes on Numerical Fluid Dynamics (D. Henry and A. Bergeon (Eds.)), 74, 241-255.
  30. [30]  Lehoucq, R.B. and Scott, J.A. (1997), Implicitly restarted Arnoldi methods and eigenvalues of the discretized Navier-Stokes equations, SIAM J. Matrix Anal. Appl., 23, 551-562.
  31. [31]  Seydel, R. (2010), Practical Bifurcation and Stability Analysis, Interdisciplinary Applied Mathematics, Springer-Verlag New York, 5.
  32. [32]  Tiesinga, G., Wubs, F.W., and Veldman, A.E.P. (2002), Bifurcation analysis of incompressible flow in a driven cavity by the Newton - Picard method, Journal of Computational and Applied Mathematics, 140(1- 2), 751-772.
  33. [33]  Tuckerman, L.S. and Barkley D. (2000), Bifurcation Analysis for Timesteppers, In: Doedel E., Tuckerman L.S. (eds) Numerical Methods for Bifurcation Problems and Large-Scale Dynamical Systems. The IMA Volumes in Mathematics and its Applications, 119, Springer, New York, NY.
  34. [34]  Temam, R. (1991), Approximation of attractors, large eddy simulations and multiscale methods, Proc. R. Soc. Lond. A, 434, 23-39.
  35. [35]  Jolly, M.S. and Rosa, R. (2005), Computation of non-smooth local centre manifolds, IMA Journal of Numerical Analysis, 25(4), 698-725.
  36. [36]  Podvigina, O.M. (2006), The center manifold theorem for center eigenvalues with non-zero real parts, arXiv:physics/0601074v1 [physics. u-dyn],.
  37. [37]  Kuznetsov, Y.A. (2004), Elements of Applied Bifurcation Theory, Springer, 3rd edition.
  38. [38]  Magnitskii, N.A. and Sidorov S.V. (2006), New Methods for Chaotic Dynamics, World Scientific, Singapore 596224, 58.
  39. [39]  Magnitskii N.A. (2012), Chapter 6: Universality of transition to chaos in all kinds of nonlinear differential equations, In Nonlinearity, bifurcation and chaos - theory and applications. Intech, 133-174.
  40. [40]  Shebalin, J.V. and Woodruff, S.L. (1996), Kolmogorov Flow In Three Dimensions, NASA Contractor Report, 198319, 96-24.
  41. [41]  Kopriva, D. (2009), Implementing Spectral Methods for Partial Differential Equations: Algorithms for Scientists and Engineers, Springer Netherlands,.
  42. [42]  Hochbruck, M. and Ostermann, A. (2005), Explicit Exponential Runge-Kutta Methods for Semilinear Parabolic Problems, SIAM J. Numer. Anal., 43(3), 1069-1090.
  43. [43]  Ashwin, P. and Podvigina, O. (2003), Approximation of attractors, large eddy simulations and multiscale methods, Proc. R. Soc. A, 459(2035), 1801-1827.
  44. [44]  Åkervik, E., Brandt, L., Henningson, D.S., Hæffner, J., Marxen, O., and Schlatter, P. (2006), An adaptive selective frequency damping method, Physics of Fluids, 18, 068102.
  45. [45]  Budanur, N. and Hof, B. (2017), Heteroclinic path to spatially localized chaos in pipe flow, Journal of Fluid Mechanics, 827.
  46. [46]  Thiago Perreira das, C. (2013), Stabilization of periodic orbits in discrete and continuous-time systems, PhD th., Universite Paris Sud - Paris XI.
  47. [47]  Dhooge, A.W., Govaerts, J.F., and Kuznetsov, Y.A. (2004), MatCont: A MATLAB package for numerical bifurcation analysis of ODEs, ACM Trans. Math. Soft., 29, pg141-164.
  48. [48]  Jordi, B.E., Cotter, C.J., and Sherwin, S.J. (2015), An adaptive selective frequency damping method, Physics of Fluids, 27, 094104.
  49. [49]  Krauskopf, B. and Osinga, H. (2007), Computing invariant manifolds via the continuation of orbit segments. Numerical Continuation Methods for Dynamical Systems: Path following and boundary value problems, O. H. Krauskopf B. and G.-V. J., Eds., Springer-Verlag, Understanding Complex Systems, 117-154.
  50. [50]  Parmananda, P., Madrigal, R., Rivera, M., Nyikos, L., Kiss, I. Z., and Gaspar, V. (1999), Stabilization of unstable steady states and periodic orbits in an electrochemical system using delayed-feedback control, Physical Review E, 59(5), 5266-5271.
  51. [51]  Sanchez, J., Net, M., Garcia-Archilla, B., and Simo, C. (2004), Newton-Krylov continuation of periodic orbits for Navier-Stokes flows. Journal of Computational Physics, 201(1), 13-33.
  52. [52]  van Veen, L., Kawahara, G., and Atsushi M. (2017), On Matrix-Free Computation of 2D Unstable Manifolds, SIAM Journal on Scientific Computing, 33(1), 25 - 44.
  53. [53]  Hicken, J.E. and Zingg, D.W. (2009), Globalization strategies for inexact-Newton solvers, 19th AIAA Computational Fluid Dynamics, 22 - 25 June 2009, San Antonio, Texas, AIAA 2009-4139.
  54. [54]  Watson, L.T. (1986), Numerical linear algebra aspects of globally convergent homotopy methods, SIAM Review, 28(4), 529-545.
  55. [55]  Henningson, D.S. and Åkervik, E. (2008), The use of global modes to understand transition and perform flow control, Physics of Fluids, 20, 031302.
  56. [56]  Evstigneev, N.M. (2017), Implementation of Implicitly Restarted Arnoldi Method on multi GPU Architecture with Application to Fluid Dynamics Problems., Communications in Computer and Information Science, 753, 296-311.
  57. [57]  Barkley, D. and Henderson, R.D. (1996), Three-dimensional Floquet stability analysis of the wake of a circular cylinder, Journal of Fluid Mechanics, 322, 215-241.
  58. [58]  Burroughs, E.A., Romero, L.A., Lehoucq, R.B., and Salinger, A.G. (2001), Large scale eigenvalue calculations for computing the stability of buoyancy driven flows, Sandia Report, SAND2001-0113.
  59. [59]  Cohen, D.S. (1977), Bifurcation from multiple complex eigenvalues, Journal of Mathematical Analysis and Applications, 57(3), 505-521.
  60. [60]  Guckenheimer, J., Holmes, P. (1983), Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields, Springer.
  61. [61]  Kreilos, T. and Eckhardt B. (2012), Periodic orbits near onset of chaos in plane Couette flow, Chaos, 22 1047505.
  62. [62]  Meca, E., Mercader, I., Batiste, O., and Ramirez-Piscina, L. (2004), Blue Sky Catastrophe in Double-Diffusive Convection, Phys Rev Lett., 92(23), 234501-1 - 234501-4.
  63. [63]  Turaev, D.V. and Shilnikov, L.P. (1995), Blue sky catastrophes Dokl. Math., 51, 404-407.
  64. [64]  Yudovich, V. (2003), Eleven great problems of mathematical hydrodynamics, Moscow Math. J., 3(2), 711-737.