Skip Navigation Links
Journal of Applied Nonlinear Dynamics
Miguel A. F. Sanjuan (editor), Albert C.J. Luo (editor)
Miguel A. F. Sanjuan (editor)

Department of Physics, Universidad Rey Juan Carlos, 28933 Mostoles, Madrid, Spain


Albert C.J. Luo (editor)

Department of Mechanical and Industrial Engineering, Southern Illinois University Ed-wardsville, IL 62026-1805, USA

Fax: +1 618 650 2555 Email:

Quadrature Synchronization of a Pair of Van der Pol Oscillators Coupled by NEMS Varactor: A Theoretical Analysis

Journal of Applied Nonlinear Dynamics 8(3) (2019) 475--491 | DOI:10.5890/JAND.2019.09.010

Aman Kumar Singh, R. D. S. Yadava

Sensors & Signal Processing Laboratory, Department of Physics, Institute of Science, Banaras Hindu University, Varanasi - 221005, India

Download Full Text PDF



The paper analyses frequency synchronization characteristics of two Van der Pol oscillators coupled by a NEMS varactor. Equations of motion are derived by taking into account the voltage nonlinearity of the NEMS varactor. The synchronization conditions are obtained in the form of coupled algebraic equations between synchronization frequency, amplitude ratio and phase difference. The synchronization frequency in phase quadrature is controlled by amplitude ratio of the coupled oscillators. A comparative analysis of synchronization characteristics is also presented for coupling by a fixed value capacitor. It is found that NEMS coupled system is tunable over an order of magnitude greater frequency range under identical conditions for quadrature tolerance. The NEMS varactor coupling does not require a master-slave like condition for attaining phase quadrature. The analyses for phase sensitivity and linear stability are performed. The stable synchronization occurs for the amplitude ratio being more than 0.7. The paper illustrates that NEMS capacitive coupling of Van der Pol oscillators facilitates amplitude ratio as controlling parameter for synchronization, and results in enhanced tunability and quadrature accuracy.


Authors would like to thank reviewers for valuable comments and suggestions. The author A. K. Singh is thankful to University Grant Commission, New Delhi, India for financial support.


  1. [1]  Adronov, A.A., Vitt, S.E., and Khaikin, S.E. (1966), Theory of Oscillators, Oxford University Press, London, 583-644.
  2. [2]  Ginoux, J.M. and Letellier, C. (2012), Van der Pol and the history of relaxation oscillations: Toward the emergence of a concept, Chaos, 22(2), 1-15.
  3. [3]  Buonomo, A. (1986), The periodic solutions of Van der Pol equation, SIAM J. Appl. Math., 59(1), 156-171.
  4. [4]  Thompson, J.M.T. and Stewart, H.B. (2002), Nonlinear Dynamics and Chaos, John Willey & Sons, West Sussex.
  5. [5]  Shohat, J. (1944), On Van der Pol’s and related nonlinear differential equation, J. Appl. Phys., 15(7), 568-574.
  6. [6]  Stoker, J.J. (1950), Nonlinear Vibration in Mechanical and Electrical System, Inderscience, New York.
  7. [7]  Hayashi, C. (2014), Nonlinear Oscillations in Physical Systems, Princeton University Press, New Jersey, Reprint.
  8. [8]  Oliveira, L.B., Fernandes, J.A., Filanovsky, I.M., Verhoeven, C.J.M., and Silva, M.M. (2008), Analysis and design of quadrature oscillator, Springer, Netherlands.
  9. [9]  Storti, D.W. and Rand, R.H. (1982), Dynamics of two strongly coupled van der Pol oscillators, Int. J. Nonlinear Mechanics, 17(3), 143-152.
  10. [10]  Storti, D.W. and Reinhall, P.G. (2008), Phase-locked mode stability for coupled Van der Pol oscillators, Transactions on ASME, 122(3), 318-323.
  11. [11]  Woafo, P., Chedjou, J.C., and Fotsin, H.B. (1996), Dynamics of a system consisting of a van der Pol oscillator coupled to a Duffing oscillator, Phys. Rev. E., 54(6), 5929-5934.
  12. [12]  Kuznetsov, A.P., Stankevich, N.V., and Turukina, L.V. (2009), Coupled van der Pol-Duffing oscillators: Phase dynamics and structure of synchronization tongues, Physica D., 238(14), 1203–1215.
  13. [13]  Allam, A., Filanovsky, I.M., Oliveira, L.B., and Fernandes, J. (2006), Synchronization of mutually coupled LC-oscillators, Proc. IEEE, International Symposium on Circuits and Systems (ISCAS), Kos, Greece, 4297- 4300.
  14. [14]  Filanovsky, I.M., Allam, A., Oliveira, L.B., and Fernandes, J. (2006), Quadrature Van der Pol oscillators using second harmonic coupling, Proc. IEEE, International Symposium on Circuits and Systems (ISCAS), Kos, Greece, 1663-1666.
  15. [15]  Filanovsky, I.M., Allam, A., Oliveira, L.B., and Fernandes, J. (2006), Synchronization of Van der Pol oscillator by external voltage of doubled frequency, Proc. IEEE, International Midwest Symposium on Circuits and Systems (MWSCAS), San Juan, Puerto Rico, 56-59.
  16. [16]  Oliveira, L.B., Filanovsky, I.M., Allam, A., and Fernandes, J. (2009), Synchronization of two LC-oscillators using capacitive coupling, Proc. IEEE, International Symposium on Circuits and Systems (ISCAS), Washington, USA, 2322-2325.
  17. [17]  Pavlidis, T. (1973), Biological Oscillators: Their Mathematical Analysis, Academic Press, London.
  18. [18]  Linkens, D.A. (1977), The stability of entrainment conditions for RLC coupled Van der Pol oscillators used as a model for intestinal electrical rhythm, Bull. Math. Biology, 39(3), 359-372.
  19. [19]  Linkens, D.A. (1979), Theoretical analysis of beating and modulation phenomena in weakly inter-coupled Van der Pol oscillator systems for biological modelling, J. Theor. Biology, 79(1), 31-54.
  20. [20]  Elbadry, M. and Harjani. R. (2015), Quadrature Frequency Generation for Wideband Wireless Application, Springer, Switzerland.
  21. [21]  Haddad, F., Zaid, L., Rahajandraibe, W., and Frioui, O. (2010), Polyphase filter design methodology for wireless communication applications in Mobile and Wireless Communications Network Layer and Circuit Level Design, Fares, S. A. and Adachi, F. (Ed.), InTechOpen, 219-246.
  22. [22]  Soliman, A.M. (2013), Two integrator loop quadrature oscillator, A review, J. Advanced Research, 4(1), 1-11.
  23. [23]  Younis, M.I. (2011), MEMS Linear and Nonlinear Statics and Dynamics, Springer, London.
  24. [24]  Mora, G. A. R. (2000), Active capacitor multiplier in Miller-compensated circuits, IEEE Trans. Solid State Circuits, 35(1), 26-32.
  25. [25]  Nayfeh, A.H. (2004), Perturbation Methods, Wiley-VCH, Weinheim, 159-227.
  26. [26]  Kreuzer, E. and Radisch, C. (2015), Control of nonlinearly coupled oscillators using a method of averaging, Proc. Appl. Math. Mech., 86th Annual Meeting of the International Association of Applied Mathematics and Mechanics (GAMM), Lecce, Italy, 261-262.
  27. [27]  Dumitrescu, I., Bachir, S., Cordeau, D., Paillot, J.-M., and Iordache, M. (2012), Modeling and characterization of oscillator circuits by Van der Pol model using parameter estimation, J. Circuits Systems Computers., 21(5), 1-15.
  28. [28]  Torok, J.S. (2000), Analytical Mechanics with an Introduction to Dynamical System, Wiley-Inderscience, New York, 288-328.
  29. [29]  Butt, H.-J. and Jaschke, M. (1995), Calculation of thermal noise in atomic force, Nanotechnology, 6(1), 1-7.
  30. [30]  Kurokawa, K. (1968), Noise in synchronised oscillators, IEEE Trans. Microwave Theory and Techniques, MTT-16(4), 234-240.
  31. [31]  Chang, H.-C., Cao, X., Mishra, U.K., and York, R.A. (1997), Phase noise in coupled oscillators, IEEE Trans. Microwave Theory and Techniques, 45(5), 604-615.
  32. [32]  Needleman, D.J., Tiesinga, P.H.E, and Sejnowsky, T.J. (2001), Collective enhancement of precision in networks of coupled oscillators, Physica D, 155(4), 324-336.
  33. [33]  Tabareu, N., Stoline, J.J, Pham, Q.-C. (2010), How synchronization protects from noise, OPLoS Computational Biology., 6(1), 1-9.
  34. [34]  Chen, H.-P. (2014), Electronically tunable quadrature oscillator using grounded components with current and voltage outputs, The Scientific World Journal., 2014, ID-572165, 1-7.
  35. [35]  Crols, J. and Steyaert, M. (1995), A fully integrated 900 MHz CMOS double quadrature down converter, Proc. IEEE, International Conference on Solid State Circuits (ISSCC), California, USA,136-138.
  36. [36]  Rofougaran, A., Rael, J., and Rofougaran, M. (1996), A 900 MHz CMOS LC-oscillator with quadrature outputs, Proc. IEEE, International Conference on Solid State Circuits (ISSCC), Philadelphia, USA, 392- 393.
  37. [37]  Djurhuus, T., Krozer, V., Vidkjer, J., and Johansen, T.K. (2005), Nonlinear analysis of a cross-coupled quadrature harmonic oscillator, IEEE Trans. Circuits and Systems-I., 52(11), 2276-2285.
  38. [38]  Sedra, A.S. and Smith, K.C. (2007), Microelectronics circuit, Oxford University Press, New York.