Skip Navigation Links
Journal of Applied Nonlinear Dynamics
Miguel A. F. Sanjuan (editor), Albert C.J. Luo (editor)
Miguel A. F. Sanjuan (editor)

Department of Physics, Universidad Rey Juan Carlos, 28933 Mostoles, Madrid, Spain


Albert C.J. Luo (editor)

Department of Mechanical and Industrial Engineering, Southern Illinois University Ed-wardsville, IL 62026-1805, USA

Fax: +1 618 650 2555 Email:

A Prey-Predator Dynamics with Square Root Functional Responses and Strong Allee Effect

Journal of Applied Nonlinear Dynamics 8(3) (2019) 419--433 | DOI:10.5890/JAND.2019.09.006

D. Pal$^{1}$, S. Biswas$^{2}$, G. S. Mahapatra$^{3}$, G. P. Samanta$^{4}$

$^{1}$ Chandrahati Dilip Kumar High School (H.S.), Chandrahati, West Bengal, 712504, India

$^{2}$ Polba High School, Polba, Hooghly-712148, West Bengal, India

$^{3}$ Department of Mathematics, National Institute of Technology-Puducherry, Karaikal-609605, India

$^{4}$ Department of Mathematics, Indian Institute of Engineering Science and Technology, Shibpur, Howrah-711103, India

Download Full Text PDF



The major aim of this paper is to study the dynamical behaviour of a prey-predator system where the prey exhibits herd behaviour. Positivity, boundedness, some extinction criteria, stability of equilibrium points are represented with some global results. Numerical computations are discussed to illustrate the analytical findings. The biological implications of analytical and numerical findings are represented. This work also has a direct bearing to the possibilities of developing conditions for ecological balance in nature and by elaborate study and analysis, it throws enough light on the scope of further work in this field.


The authors are grateful to the anonymous referees and Editors Albert C. J. Luo and J. A. Tenreiro Machado for their careful reading, valuable comments and helpful suggestions, which have helped them to improve the presentation of this work significantly.


  1. [1]  Lotka, A. (1925), Elements of Physical Biology, William and Wilkins: Baltimore.
  2. [2]  Volterra, V. (1926), Variazioni e fluttuazioni del numero di individui in specie animali con-viventi., Mem. Accd. Linc., 2 , 31-113.
  3. [3]  Verhulst, P.F. (1838), Notice sur la loi que la population poursuit dans son accroissement, Correspondence math´ematique et physique, 10, 113-121.
  4. [4]  Pearl, R. and Reed, L. (1920), On the rate of growth of the population of the United States, Proc. Nat. Acad. Sci., 6, 275-288.
  5. [5]  Berec, L., Angulo, E., and Courchamp, F. (2006), Multiple Allee effects and population management, Trends Ecol. Evol., 22, 185-191.
  6. [6]  Clutton-Brock, T.H., Gaynor, D., Mcllrath, G.M., Maccoll, A.D.C., Kansky, R., Chadwick, P., Manser, M., Skinner, J.D., and Brotherton, P.N.M. (1999), Predation, group size and mortality in a cooperative mongoose, Suricata suricatta, J. Anim. Ecol., 68, 672-683.
  7. [7]  Courchamp, F., Clutton-Brock, T., and Grenfell, B. (1999), Inverse dependence and the Allee effect, Trends Ecol. Evol., 14, 405-410.
  8. [8]  Courchamp, F., Berec L., and Gascoigne, J. (2008), Allee Effects in Ecology and Conservation, Oxford University Press: Oxford.
  9. [9]  Mooring, M.S., Fitzpatrick, T.A., Nishihira, T.T., and Reisig, D.D. (2004), Vigilance, predation risk, and the Allee effect in desert bighorn sheep, J. Wildlife Management, 68, 519-532.
  10. [10]  Rinella, D.J., Wipfli, M.S., Stricker, C.A., Heintz, R.A., and Rinella, M.J. (2012), Pacific salmon (Oncorhynchus sp.) runs and consumer fitness: growth and energy storage in stream-dwelling salmonids increase with salmon spawner density, Canad. J. Fish. Aquat. Sci., 69, 73-84.
  11. [11]  Stephens, P.A., Sutherland, W.J., and Freckleton, R.P. (1999), What is the Allee effect?, Oikos, 87, 185-190.
  12. [12]  Allee, W. (1927a), Animal aggregations, Quart. Rev. Biol., 2, 367-398.
  13. [13]  Allee, W. (1927b), Studies in animal aggregations: some physiological effects of aggregation on the brittle starfish, Ophioderma brevispina, J. Exp. Zool., 48, 475-495.
  14. [14]  Allee, W. (1932), Studies in animal aggregations: mass protection against colloidal silver among goldfishes, J. Exp. Zool., 61 (1932), 185-207.
  15. [15]  Odum, E. (1953), Fundamentals of Ecology, Saunders: Philadelphia.
  16. [16]  Stephens P.A. and Sutherland, W.J. (1999), Consequences of the Allee effect for behaviour, ecology and conservation, Trends Ecol. Evol., 14, 401-405.
  17. [17]  Kot, M. (2001), Elements of Mathematical Biology, Cambridge University Press: Cambridge.
  18. [18]  van Voorn, G.A.K., Hemerik, L., Boer, M.P., and Kooi, B.W. (2007), Heteroclinic orbits indicate overexploitation in predator-prey systems with a strong Allee effect, Math. Biosci., 209, 451-469.
  19. [19]  Wang, M.H. and Kot, M. (2001), Speeds of invasion in a model with strong or weak Allee effects, Math. Biosci., 171, 83-97.
  20. [20]  Wang, J., Shi, J., and Wei, J. (2011) Predator-prey system with strong Allee effect in prey, J. Math. Biol., 62, 291-331.
  21. [21]  Clark, C.W. (1990), Mathematical Bioeconomic: The Optimal Mmanagement of Renewable Resources, Wiley: New York.
  22. [22]  Clark, C.W. (2007), The Worldwide Crisis in Fisheries: Economic Models and Human Behavior, Cambridge University Press: Cambridge.
  23. [23]  Liermann, M. and Hilborn, R. (2001), Depensation: evidence, models and implications, Fish Fish., 2, 33-58.
  24. [24]  Wang, G., Liang, X.G., and Wang, F.Z. (1999), The competitive dynamics of populations subject to an Allee effect, Ecol. Model., 124, 183-192.
  25. [25]  Bazykin, A.D., Berezovskaya, F.S., Isaev, A.S., and Khlebopros, R.G. (1997) Dynamics of forest insect density: bifurcation approach, J. Theor. Biol., 186, 267-278.
  26. [26]  Conway, E.D. and Smoller, J.A. (1986) Global analysis of a system of predator-prey equations, SIAM J. Appl. Math., 46, 630-642.
  27. [27]  Flores, J.D., Mena-Lorca, J., Gonźalez-Yaňez, B., and Gonźalez-Olivares, E. (2007) Consequences of depensation in a Smith’s bioeconomic model for open-access fishery, In: Proceedings of international symposium on mathematical and computational biology (Eds. :R. Mondaini and R.Dilao). E-papers Servios Editoriais Ltda., 219-232.
  28. [28]  Gonźalez-Olivares, E. and Rojas-Palma, A. (2011)Multiple Limit Cycles in a Gause type predator-preymodel with Holling type III functional response and Allee effect on prey, Bull. Math. Biol., 73, 1378-1397.
  29. [29]  Aguirre, P., Gonźalez-Olivares, E., and Sáez, E. (2009a), Two limit cycles in a Leslie-Gower Predator-prey model with additive Allee effect, Nonlinear Anal. RWA, 10, 1401-1416.
  30. [30]  Aguirre, P., Gonźalez-Olivares, E., and Sáez, E. (2009b), Three limit cycles in a Leslie-Gower Predator-prey model with additive Allee effect, SIAM J. Appl. Math., 69, 1244-1262.
  31. [31]  Maiti, A., Sen, P., Manna, D., and Samanta, G.P. (2016) A predator-prey system with herd behaviour and strong Allee effect, Nonlinear Dynamics and Systems Theory, 16, 86-101.
  32. [32]  Holling, C.S. (1959b), Some characteristics of simple types of predation and parasitism, Can. Entomol., 91, 385-398.
  33. [33]  Hastings, A. and Powell, T. (1991), Chaos in a three-species food chain, Ecology, 72, 896-903.
  34. [34]  Gakkhar, S. and Shing, A. (2012), Control of chaos due to additional predator in the Hastings-Powell food chain model, J. Math. Anal. Appl., 385, 423-438.
  35. [35]  Ton, T.V. and Yagi, A. (2011), Dynamics of a stochastic predator-prey model with the Beddington-DeAngelis functional response, Communications on Stochastic Analysis, 2, 371-386.
  36. [36]  Xiao, D., Li, W., and Han, M. (2006), Dynamics in a ratio-dependent predator-prey model with predator harvesting, J. Math. Anal. Appl., 324, 14-29.
  37. [37]  Mukhopadhyay, B. and Bhattacharyya, R. (2011) On a three-tier ecological food chain model with deterministic and random harvesting: A mathematical study, Nonlinear Analysis: Modelling and Control, 16, 77-88.
  38. [38]  Holling, C.S. (1959a), The components of predation as revealed by a study of small mammal predation of the European pine sawfly, Can. Entomol., 91, 293-320.
  39. [39]  Maiti, A. and Samanta, G.P. (2005), Deterministic and stochastic analysis of a prey-dependent predator-prey system, Internat. J. Math. Ed. Sci. Tech., 36, 65-83.
  40. [40]  Ruan, S. and Xiao, D. (2001) Global analysis in a predator-prey system with nonmonotonic functional response, SIAM J. Appl. Math., 61, 1445-1472.
  41. [41]  Murray, J.D. (1993), Mathematical Biology, Springer-Verlag: New York.
  42. [42]  Braza, A.P. (2012), Predator-prey dynamics with square root functional responses, Nonlinear Anal. RWA, 13, 1837-1843.
  43. [43]  Ajraldi, V., Pittavino, M., and Venturino, E. (2011), Modelling herd behaviour in population systems, Nonlinear Anal. RWA 12, 2319-2338.
  44. [44]  Bera, S.P., Maiti, A., and Samanta, G.P. (2015),Modelling herd behaviour of prey: analysis of a prey-predator model, World Journal of Modelling and Simulation ,11, 3-14.
  45. [45]  Bera, S.P., Maiti, A., and Samanta, G.P. (2016), Stochastic analysis of a prey-predator model with herd behaviour of prey, Nonlinear Analysis: Modelling and Control, 21, 345-361.
  46. [46]  Arrowsmith, D.K. and Place, C.M. (1992), Dynamical Systems: Differential Equations, Maps, and Chaotic Behaviour, Chapman & Hall: London.
  47. [47]  Hassard., B.D., Kazarinoff, N.D., and Wan, Y.H. (1981), Theory and Application of Hopf-bifurcation, Cambridge University Press: Cambridge.