Skip Navigation Links
Journal of Applied Nonlinear Dynamics
Miguel A. F. Sanjuan (editor), Albert C.J. Luo (editor)
Miguel A. F. Sanjuan (editor)

Department of Physics, Universidad Rey Juan Carlos, 28933 Mostoles, Madrid, Spain


Albert C.J. Luo (editor)

Department of Mechanical and Industrial Engineering, Southern Illinois University Ed-wardsville, IL 62026-1805, USA

Fax: +1 618 650 2555 Email:

Nonlinear Control Technique for Dual Combination Synchronization of Complex Chaotic Systems

Journal of Environmental Accounting and Management 8(2) (2019) 261--277 | DOI:10.5890/JAND.2019.06.009

Ajit K. Singh$^{1}$, Vijay K. Yadav$^{2}$, S. Das$^{2}$

$^{1}$ Department of Mathematics, National Institute of Technology, Hamirpur, HP 177005, India

$^{2}$ Department of Mathematical Sciences, Indian Institute of Technology (BHU), Varanasi - 221005, India

Download Full Text PDF



In this article, the authors have investigated a novel scheme of dual combination synchronization among six different complex chaotic systems using nonlinear control technique. The important feature of the considered dual combination synchronization is various synchronization processes viz., complete synchronization, combination synchronization, projective synchronization, dual synchronization, chaos control problem become particular cases of the said scheme. Since complex chaotic systems have additional variables and complexity in behaviours, the scheme is expected to be more secure for transmitting and receiving signals in communication theory. The stability analysisof the scheme is achieved by using nonlinear control method based on Lyapunov stability theory. The corresponding theoretical results are being simulated using fourth order Runge-Kutta algorithm taking complex Lorenz system, complex Lu system, complex T system, complex Chen system as drive systems and complex two coupled dynamos system and a new nonlinear complex chaotic system as response systems. The results are depicted through graphical presentations for different particular cases.


  1. [1]  Liu,Y., Li, L., and Feng, Y. (2016), Finite-time synchronization for high dimensional chaotic systems and its application to secure communication, Journal of Computational and Nonlinear Dynamics, 11(5), 051028.
  2. [2]  Mahmoud, G.M. and Mahmoud, E.E. (2010), Complete synchronization of chaotic complex nonlinear systems with uncertain parameters, Nonlinear Dyn, 62, 875-882.
  3. [3]  Ghosh, D., Grosu, I., and Dana, S.K. (2012), Design of coupling for synchronization in time-delay systems, Chaos, 22, 03311.
  4. [4]  Miao, Q.Y., Fang, J.A., Tang, Y., and Dong, A.H. (2009), Increase-order projective synchronization of chaotic systems with time delay, Chinese Physics Letters, 26, 50501-50505.
  5. [5]  Singh, A.K., Yadav, V.K., and Das, S. (2017), Synchronization between fractional order complex chaotic systems with uncertainty, Optik, 133, 98-107, DOI: 10.1016/j.ijleo.2017.01.017.
  6. [6]  Ojo, K.S., Njah, A.N., and Olusola, O.I. (2015), Compound-combination synchronization of chaos in identical and different orders chaotic systems, Archives of Control Sciences, 25, 463-490.
  7. [7]  Alsawalha, M.M. and Noorani, M.S.M. (2012), Chaos reduced-order anti-synchronization of chaotic systems with fully unknown parameters, Communication in Nonlinear Science and Numerical Simulation, 17, 1908- 1920.
  8. [8]  Wang, X., Guo, X., and Wang L. (2013), Finite-time synchronization of a new hyperchaotic Lorenz system, Int J of Modern Physics B, 27, 1350033-1350041.
  9. [9]  Sudheer, K.S. and Sabir M. (2009), Hybrid synchronization of hyperchaotic Lu system, Pramana, 73, 781-786.
  10. [10]  Yassen, M.T. (2005), Chaos synchronization between two different chaotic systems using active control, Chaos Solitons and Fractals, 23, 131-140.
  11. [11]  Singh, A.K., Yadav, V.K., and Das, S. (2017), Synchronization between fractional order complex chaotic systems, Int J Dynam Control, 5(3), 756-770, DOI: 10.1007/s40435-016-0226-1.
  12. [12]  Zhang, T., Ge, S.S., and Hang, C.C. (2000), Adaptive neural network control for strict-feedback nonlinear systems using backstepping design, Automatica, 36, 1835-1846.
  13. [13]  Singh, A.K., Yadav, V.K., and Das, S. (2016), Comparative study of synchronization methods of fractional order chaotic systems, Nonlinear Engineering, 5(3), 185-192, DOI: 10.1515/nleng-2016-0023.
  14. [14]  Chen, M. and Han, Z. (2003), Controlling and synchronizing chaotic Genesio system via nonlinear feedback control, Chaos Solitons and Fractals, 17, 709-716.
  15. [15]  Park, J.H. (2005), On synchronization of unified chaotic systems via nonlinear control, Chaos Solitons and Fractals, 25, 699-704.
  16. [16]  Wu, G.C., Baleanu, D., and Huang, L.L. (2017) Chaos synchronization of the fractional rucklidge system based on new adomian polynomials, Journal of Applied Nonlinear Dynamics, 6(3), 379-385.
  17. [17]  Rafikova, E., Rafikov, M., and Rinaldo, G. (2016) Synchronization of the mobile robot to a chaotic trajectory, Journal of Applied Nonlinear Dynamics, 5(3), 325-335.
  18. [18]  Delavari, H., Asadbeigi, A., and Heydarnia, O. (2015) Synchronization of micro-electro-mechanical-systems in finite time, Discontinuity, Nonlinearity, and Complexity, 4(2), 173-185.
  19. [19]  Khan, A. and Pal, R. (2013) Synchronization of two identical restricted planar isosceles three-body-problem and a study on possible chaos control, Discontinuity, Nonlinearity, and Complexity, 2(2), 183-201.
  20. [20]  Pisarchik, A.N., Jimenez-Rodriguez, M., and Jaimes-Reategui, R. (2015) How to resist synchronization attacks, Discontinuity, Nonlinrearity, and Complexity,4(1),1-9.
  21. [21]  Singh, A.K., Yadav, V.K., and Das, S. (2019), Synchronization of time-delay chaotic systems with uncertainties and external disturbances, Discontinuity, Nonlinearty, and Complexity, 8(1), 13-21
  22. [22]  Min, F. and Luo, A.C.J. (2015) Complex dynamics of projective synchronization of Chua circuits with different scrolls, International Journal of Bifurcation and Chaos, 25(5), 1530016.
  23. [23]  Min, F.H. and Luo, A.C.J. (2011) Sinusoidal synchronization of a Duffing oscillator with a chaotic pendulum, Physics Letter A, 375, 3080-3089.
  24. [24]  Luo, A.C.J. and Min, F.H. (2011) The chaotic synchronization of a controlled pendulum with a periodically forced, damped Duffing oscillator, Communications in Nonlinear Science and Numerical Simulations, 16, 4704-4717.
  25. [25]  Luo, A.C.J. and Min, F.H. (2011) Synchronization dynamics of two different dynamical systems, Chaos, Solitons & Fractals, 44, 362-380.
  26. [26]  Luo, A.C.J. andMin, F.H. (2011) Synchronization of a periodically forced Duffing oscillator with a periodically excited pendulum, Nonlinear Analysis Real World Applications, 12, 1810-1827.
  27. [27]  Ojo, K.S., Njah, A.N., and Olusola O.I. (2016) Generalized combination-combination synchronization of chaos in identical orders chaotic systems, Journal of Applied Nonlinear Dynamics, 5(1), 43-58.
  28. [28]  Min, F.H. and Luo, A.C.J. (2012) On parameter characteristics of chaotic synchronization in two nonlinear gyroscope systems, Nonlinear Dyn., 69, 1203-1223.
  29. [29]  Liu, Y. and Davids, P. (2000), Dual synchronization of chaos, Phys. Rev. E, 61, 2176-2179.
  30. [30]  Shahverdiev, E.M., Sivaprakasam, S., and Shore, K.A. (2003), Dual and dual-cross synchronizations in chaotic systems, Optics Communications, 216, 179-183.
  31. [31]  Ning, D., Lu, J., and Han, X. (2007), Dual synchronization based on two different chaotic systems: Lorenz systems and Rossler systems, Journal of Computational and Applied Mathematics, 206, 1046-1050.
  32. [32]  Ghosh, D. and Chowdhury, A.R. (2010), Dual-anticipating, dual and dual-lag synchronization in modulated time-delayed systems, Physics Letters A, 374, 3425-3436.
  33. [33]  Ghosh, D. (2011), Projective-dual synchronization in delay dynamical systems with time-varying coupling delay, Nonlinear Dyn, 66, 717-730.
  34. [34]  Othman, A.A., Noorani, M.S.M., and Al-sawalha, M.M. (2016), Adaptive dual synchronization of chaotic and hyperchaotic systems with fully uncertain parameters, Optik, 127, 7852-7864.
  35. [35]  Runzi, L., Yinglan, W., and Shucheng, D. (2011), Combination synchronization of three classic chaotic systems using active backstepping design, Chaos, 21, 431141-431146.
  36. [36]  Zhou, X.B., Jiang, M.R., and Huang, Y.Q. (2013), Combination synchronization of three identical or different nonlinear complex hyperchaotic systems, Entropy, 15, 3746-3761.
  37. [37]  Sun, J., Shen, Y., Zhang, G., Xu, C., and Cui, G. (2013), Combination-combination synchronization among four identical or different chaotic systems, Nonlinear Dyn, 73, 1211-1222.
  38. [38]  Sun, J., Yin, Q., and Shen, Y. (2014), Compound synchronization for four chaotic systems of integer order and fractional order, EPL, 106, 400051-400056.
  39. [39]  Sun, J. and Shen, Y. (2016), Compound-combination anti-synchronization of five simplest memristor chaotic systems, Optik, 127, 9192-9200.
  40. [40]  Sun, J., Wang, Y., Wang, Y., Cui, G., and Shen, Y. (2016), Compound-combination synchronization of five chaotic systems via nonlinear control, Optik, 127, 4136-4143.
  41. [41]  Sun, J., Jiang, S., Cui, G., and Wang, Y. (2016), Dual combination synchronization of six chaotic systems, Journal of Computational and Nonlinear Dynamics, 11(3), 034501.
  42. [42]  Singh, A.K., Yadav, V.K., and Das, S. (2017), Dual combination synchronization of fractional order complex chaotic systems, Journal of Computational and Nonlinear Dynamics, 12(1), 011017, DOI: 10.1115/1.4034433.
  43. [43]  Lorenz, E.N. (1963), Deterministic non-periodic flow, J. Atmos. Sci., 23, 130-141.
  44. [44]  Fowler, A.C., Gibbon, J.D., and McGuinness, M.J. (1982), The complex Lorenz equations, Phys. D, 4, 139-163.
  45. [45]  Mahmoud, G.M., Al-Kashif, M.A., and Aly, S.A. (2007), Basic properties and chaotic synchronization of complex Lorenz system, Int J Mod Phys C, 18, 253.
  46. [46]  Lu, J. and Chen, G. (2002), A new chaotic attractor coined, Int. J. Bifurcation and Chaos, 12, 659-661.
  47. [47]  Mahmoud, G.M., Bountis, T., and Mahmoud, E.E. (2007), Active control and global synchronization of complex Chen and Lu systems, Int J Bifurc Chaos, 17, 4295-4308.
  48. [48]  Tigan, G. and Opris, D. (2008), Analysis of a 3D chaotic system, Chaos Solitons Fractals, 36, 1315-1319.
  49. [49]  Liu, X., Hong, L., and Yang, L. (2014), Fractional order complex T system: bifurcations, chaos control and synchronization, Nonlinear Dyn., 75, 589-602.
  50. [50]  Chen, G. and Ueta, T. (1999), Yet another chaotic attractor, Int. J. Bifurcation and Chaos, 9, 1465-1466.
  51. [51]  Mahmoud, G.M., Bountis, T., AbdEl-Latif, G.M., and Mahmoud, E.E. (2009), Chaos synchronization of two different chaotic complex Chen and Lu systems, Nonlinear Dyn., 55, 43-53.
  52. [52]  Agiza, H.N. (2002), Controlling chaos for the dynamical system of coupled dynamos, Chaos Solitons and Fractals, 13, 341-352.
  53. [53]  Mahmoud, G.M., Aly, S.A., and Farghaly, A.A. (2007), On chaos synchronization of a complex two coupled dynamos system, Chaos Solitons and Fractals, 33, 178-187.
  54. [54]  Sun, J., Wang, Y., Cui, G., and Shen, Y. (2016), Dynamical properties and combination-combination complex synchronization of four novel chaotic complex systems, Optik, 127, 1572-1580.
  55. [55]  Muthuswamy, B. and Chua, L.O. (2010), Simplest chaotic circuit, Int. J. Bifur. Chaos, 20, 1567-1580.