Skip Navigation Links
Journal of Applied Nonlinear Dynamics
Miguel A. F. Sanjuan (editor), Albert C.J. Luo (editor)
Miguel A. F. Sanjuan (editor)

Department of Physics, Universidad Rey Juan Carlos, 28933 Mostoles, Madrid, Spain

Email: miguel.sanjuan@urjc.es

Albert C.J. Luo (editor)

Department of Mechanical and Industrial Engineering, Southern Illinois University Ed-wardsville, IL 62026-1805, USA

Fax: +1 618 650 2555 Email: aluo@siue.edu


An Adaptive Multiresolution Scheme with Second Order Local Time-stepping for Reaction-diffusion Equations

Journal of Applied Nonlinear Dynamics 7(3) (2018) 287--295 | DOI:10.5890/JAND.2018.09.006

Müller Moreira Lopes$^{1}$; Margarete O. Domingues$^{2}$; Odim Mendes$^{3}$; Kai Schneider$^{4}$

$^{1}$ Post-graduation program in Applied Computing, National Institute for Space Research, São José dos Campos, 12227-010, Brazil

$^{2}$ Associated Laboratory for Computing and Applied Mathematics, National Institute for Space Research, São José dos Campos, 12227-010, Brazil

$^{3}$ Space Geophysics Division, National Institute for Space Research, São José dos Campos, 12227-010, Brazil

$^{4}$ Institut de Mathématiques de Marseille (I2M), Aix-Marseille Université, 13453, Marseille, Cedex 13, France

Download Full Text PDF

 

Abstract

For adaptive multiresolution schemes we propose a local timestepping scheme based on natural extensions of Runge–Kutta methods. We consider reaction-diffusion equations in two space dimensions and assess the precision and efficiency of the new method. The obtained results are compared with those using classical finite volume schemes on a uniform grid and multiresolution schemes with global time stepping. It is shown that both CPU time and precision of the adaptive solutions are improved.

Acknowledgments

The authors thank the Brazilian agencies CAPES, CNPq (140626/2014-0, 306038/2015-3, 307083/2017-9), FAPESP (2015/50403-0, 2015/25624-2), FINEP/CT-INFRA (01120527-00) for financial support. The authors are indebted to Prof. C.-D. Munz who motivated the use of NERK method for local time stepping. We thank Dr. Olivier Roussel for developing the original Carmen Code and fruitful scientific discussions. We also thank Eng. V. E. Menconi and Dr. A. K. F. Gomes for their helpful computational assistance. MD thankfully acknowledges financial support from ECM, France. KS acknowledges financial support from the ANR-DFG project AIFIT (Grant 15-CE40-0019), and the Pacific Institute for Mathematical Sciences, Banff, Canada, for hospitality.

References

  1. [1]  Deiterding, R. (2011), Block-structured adaptive mesh refinement - theory, implementation and application, ESAIM: Proceedings, 34, 97-150.
  2. [2]  Müller, S. (2003), Adaptive multiscale schemes for conservation laws, volume 27 of Lecture Notes in Compu- tational Science and Engineering, Springer: Heidelberg.
  3. [3]  Roussel O., Schneider K., Tsigulin, A., and Bockhorn, H. (2003), A conservative fully adaptative multiresolution algorithm for parabolic PDEs, Journal of Computational Physics, 188, 493-523.
  4. [4]  Harten, A. (1995), Multiresolution algorithms for the numerical solution of hyperbolic conservation laws, Communications on Pure and Applied Mathematics, 48, 1305-1342.
  5. [5]  Müller, S. and Striba, Y. (2007), Fully adaptive multiscale schemes for conservation laws employing locally varying time stepping, Journal of Scientific Computing, 30(3), 493-531.
  6. [6]  Domingues, M.O., Gomes, S.M., Roussel, O., and Schneider, K. (2008), An adaptive multiresolution scheme with local time stepping for evolutionary PDEs, Journal of Computational Physics, 227(8), 3758-3780.
  7. [7]  Zennaro, M. (1986), Natural continuous extensions of Runge-Kutta methods, Mathematics of Computation, 46(173), 119-133.
  8. [8]  Moreira Lopes, M., Domingues, M.O., Schneider, K., and Mendes, O., High-order local time-stepping for adaptive multiresolution methods, unpublished.
  9. [9]  Deiterding, R., Domingues, M.O., Gomes, S.M., and Schneider, K. (2016), Comparison of adaptive multiresolution and adaptive mesh refinement applied to simulations of the compressible Euler equations, SIAM: Journal of Scientific Computing, 38(5), S173-S193.
  10. [10]  Owren, B. and Zennaro, M. (1992), Derivation of efficient, continuous, explicit Runge-Kutta methods, SIAM. Journal on Scientific and Statistical Computing, 13(6), 1488-1501.
  11. [11]  Bockhorn, H., Fröhlich, J., and Schneider, K. (1999), An adaptive two-dimensional wavelet-vaguelette algorithm for the computation of flame balls, Combustion Theory and Modelling, 3, 177-198.
  12. [12]  Domingues, M.O., Gomes, S.M., Roussel, O., and Schneider, K. (2011), Adaptive multiresolution methods, ESAIM: Proceedings, 34, 1-96.
  13. [13]  Schneider, K. and Vasilyev, O. (2010), Wavelet methods in computational fluid dynamics, Annual Review of Fluid Mechanics, 42, 473-503.
  14. [14]  Vermiglio, R. and Zennaro, M. (1993), Multistep natural continuous extensions of Runge-Kutta methods: the potential for stable interpolation, Applied Numerical Mathematics, 12(6), 521-546.
  15. [15]  Winters, A.R and Kopriva, D.A. (2014), High-order local time stepping on moving DG spectral element meshes, Journal of Scientific Computing, 58(1), 176-202.