Skip Navigation Links
Journal of Applied Nonlinear Dynamics
Miguel A. F. Sanjuan (editor), Albert C.J. Luo (editor)
Miguel A. F. Sanjuan (editor)

Department of Physics, Universidad Rey Juan Carlos, 28933 Mostoles, Madrid, Spain


Albert C.J. Luo (editor)

Department of Mechanical and Industrial Engineering, Southern Illinois University Ed-wardsville, IL 62026-1805, USA

Fax: +1 618 650 2555 Email:

On the Solutions of Some Boundary Value Problems for Integro-differential Inclusions of Fractional Order

Journal of Applied Nonlinear Dynamics 6(2) (2017) 173--179 | DOI:10.5890/JAND.2017.06.004

Aurelian Cernea$^{1}$,$^{2}$

$^{1}$ Faculty of Mathematics and Informatics, University of Bucharest, Academiei 14, 010014 Bucharest, Romania

$^{2}$ Academy of Romanian Scientists, Splaiul Independen¸tei 54, 050094 Bucharest, Romania

Download Full Text PDF



We study the existence of solutions for fractional integro-differential inclusions with nonlocal boundary conditions and with multi-order fractional integral conditions. We establish Filippov type existence results in the case of nonconvex set-valued maps.


  1. [1]  Kilbas, A., Srivastava, H.M., and Trujillo, J.J. (2006), Theory and Applications of Fractional Differential Equations, Elsevier: Amsterdam.
  2. [2]  Miller, K. and Ross, B. (1993), An Introduction to the Fractional Calculus and Differential Equations, John Wiley: New York, 1993.
  3. [3]  Podlubny, I. (1999), Fractional Differential Equations, Academic Press: San Diego.
  4. [4]  Almeida, R., Pooseh, S., and Torres, D.F.M. (2015), Computational Methods in the Fractional Calculus of Variations, Imperial College Press: London.
  5. [5]  Malinowska, A.B., Odzijewicz, T., and Torres, D.F.M. (2015), Advanced Methods in the Fractional Calculus of Variations, Springer: Cham.
  6. [6]  Băleanu, D., Diethelm, K., Scalas, E. and Trujillo, J.J. (2012), Fractional Calculus Models and Numerical Methods, World Scientific: Singapore.
  7. [7]  Caputo, M. (1969), Elasticità e Dissipazione, Zanichelli: Bologna.
  8. [8]  Cernea, A. (2014), On a fractional integrodifferential inclusion, Electronic J. Qual. Theory Differ. Equ., 2014(25), 1-11.
  9. [9]  Cernea, A. (2015), Continuous selections of solutions sets of fractional integrodifferential inclusions, Acta Math. Scientia, 35B, 399-406.
  10. [10]  Cernea, A. (2016), A note on the solution set of a fractional integrodifferential inclusion, Progress Fractional Differentiation Appl., 2, 1-7.
  11. [11]  Chalishajar, D.N. and Karthikeyan, K. (2013), Existence and uniqueness results for boundary value problems of higher order fractional integro-differential equations involving Gronwall’s inequality in Banach spaces, Acta Math. Scientia, 33B, 758-772.
  12. [12]  Karthikeyan, K. and Trujillo, J.J. (2012), Existence and uniqueness results for fractional integro-differential equations with boundary value conditions, Commun Nonlinear Sci. Numer. Simulat. 17, 4037-4043.
  13. [13]  Wang, J.R., Wei, W., and Yang, Y. (2010) Fractional nonlocal integro-differential equations of mixed type with time varying generating operators and optimal control, Opuscula Math. 30, 361-381.
  14. [14]  Filippov, A.F. (1967), Classical solutions of differential equations with multivalued right hand side, SIAM J. Control, 5, 609-621.
  15. [15]  Cernea, A. (2010), Continuous version of Filippov’s theorem for fractional differential inclusions, Nonlinear Anal., 72, 204-208.
  16. [16]  Cernea, A. (2015), Filippov lemma for a class of Hadamard-type fractional differential inclusions, Fract. Calc. Appl. Anal., 18, 163-171.
  17. [17]  Ahmad, B. and Ntouyas, S.K. (2014), On higher-order sequential differential inclusions with nonlocal three- point boundary conditions, Abstract Appl. Anal., 2014, ID 659405, 1-10.
  18. [18]  Aphithana, A., Ntouyas, S.K., and Tariboon, S. (2015), Existence and uniqueness of symmetric solutions for fractional differential equations with multi-order fractional integral conditions, Boundary Value Problems, 2015(68), 1-14.
  19. [19]  Aubin, J.P. and Frankowska, H. (1990), Set-valued Analysis, Birkhauser: Basel.