Skip Navigation Links
Journal of Applied Nonlinear Dynamics
Miguel A. F. Sanjuan (editor), Albert C.J. Luo (editor)
Miguel A. F. Sanjuan (editor)

Department of Physics, Universidad Rey Juan Carlos, 28933 Mostoles, Madrid, Spain


Albert C.J. Luo (editor)

Department of Mechanical and Industrial Engineering, Southern Illinois University Ed-wardsville, IL 62026-1805, USA

Fax: +1 618 650 2555 Email:

On Identically Distributed non-Volterra Cubic Stochastic Operator

Journal of Applied Nonlinear Dynamics 6(1) (2017) 79--90 | DOI:10.5890/JAND.2017.03.006

U. U. Jamilov$^{1}$; M. Ladra$^{2}$

$^{1}$ Institute of Mathematics, National University of Uzbekistan, Tashkent, 100125, Uzbekistan

$^{2}$ Department of Algebra, University of Santiago de Compostela, Santiago de Compostela, 15782, Spain

Download Full Text PDF



We introduce the notion of identically distributed strictly non-Volterra cubic stochastic operator. We show that any identically distributed strictly non-Volterra cubic stochastic operator has a unique fixed point and that such operator has the property of being regular.


This work was partially supported by a grant from the Niels Henrik Abel Board. The first author thanks the University of Santiago de Compostela (USC), Spain, for the kind hospitality and for providing all facilities. The second author was supported by Ministerio de Economía y Competitividad (Spain), grant MTM2013-43687-P (European FEDER support included) and by Xunta de Galicia, grant GRC2013- 045 (European FEDER support included).


  1. [1]  Bernstein, S.N. (1942), Solution of a mathematical problem connected with the theory of heredity, Annals of Mathematical Statistics, 13, 53-61.
  2. [2]  Ganikhodjaev, N.N., Ganikhodjaev, R.N., and Jamilov(Zhamilov), U.U. (2015), Quadratic stochastic operators and zero-sum game dynamics, Ergodic Theory and Dynamical Systems, 35(5), 1443-1473.
  3. [3]  Ganikhodzhaev, N.N., Jamilov, U.U., and Mukhitdinov, R.T. (2014), Nonergodic quadratic operators for a two-sex population, Ukrainian Mathematical Journal, 65(8), 1282-1291.
  4. [4]  Ganikhodzhaev, R.N. (1993), Quadratic stochastic operators, Lyapunov functions and tournaments, Sbornik Mathematics, 76(2), 489-506.
  5. [5]  Ganikhodzhaev, R.N. (1994) Map of fixed points and Lyapunov functions for one class of discrete dynamical systems, Mathematical Notes, 56(5), 1125-1131.
  6. [6]  Ganikhodzhaev, R.N. and Eshmamatova, D.B. (2006), Quadratic automorphisms of a simplex and the asymptotic behavior of their trajectories, Vladikavkaz Mathematical Journal, 8(2), 12-28.
  7. [7]  Kesten, H.(1970) Quadratic transformations: A model for population growth. I, Advances in Applied Probability, 2, 1-82.
  8. [8]  Lyubich, Y.I. (1992) Mathematical structures in population genetics, vol. 22 of Biomathematics, Springer- Verlag, Berlin.
  9. [9]  Rozikov, U.A. and Zhamilov, U.U. (2008), F-quadratic stochastic operators, Mathematical Notes, 83(3-4), 554-559.
  10. [10]  Rozikov, U.A. and Zhamilov, U.U. (2011), Volterra quadratic stochastic operators of a two-sex population, Ukrainian Mathematical Journal, 63(7), 1136-1153.
  11. [11]  Ulam, S.M. (1960), A collection of mathematical problems, Interscience Tracts in Pure and Applied Mathematics, no. 8, Interscience Publishers, New York-London.
  12. [12]  Zakharevich, M.I. (1978) On the behaviour of trajectories and the ergodic hypothesis for quadratic mappings of a simplex, Russian Mathematical Surveys, 33(6), 265-266.
  13. [13]  Zhamilov, U.U. and Rozikov, U.A. (2009), The dynamics of strictly non-Volterra quadratic stochastic operators on the 2-simplex, Sbornik Mathematics, 200(9), 1339-1351.
  14. [14]  Ganikhodzhaev, R.N., Mukhamedov, F.M., and Rozikov, U.A. (2011), Quadratic stochastic operators and processes: results and open problems, Infinite Dimensional Analysis, Quantum Probability and Related Topics, 14(2), 279-335.
  15. [15]  Khamraev, A.Yu. (2009), On a Volterra-type cubic operator (Russian), Uzbek Mathematical Journal, 3, 65-71.
  16. [16]  Rozikov, U.A. and Khamraev, A.Yu. (2014), On construction and a class of non-Volterra cubic stochastic operators, Nonlinear Dynamics and System Theory, 14(1), 92-100.
  17. [17]  Rozikov, U.A. and Khamraev, A.Yu. (2004), On cubic operators defined on finite-dimensional simplices, Ukrainian Mathematical Journal, 56(10), 1699-1711.
  18. [18]  Khamraev, A.Yu. (2004), On cubic operators of Volterra type (Russian), Uzbek Mathematical Journal, 2, 79-84.
  19. [19]  Devaney, R.L. (2003), An introduction to chaotic dynamical systems, Studies in Nonlinearity, Westview Press, Boulder, CO.
  20. [20]  Elaydi, S.N. (2000), Discrete chaos, Chapman & Hall/CRC, Boca Raton, FL.
  21. [21]  Robinson, R.C. (2012), An introduction to dynamical systems-continuous and discrete, vol. 19 of Pure and Applied Undergraduate Texts, 2nd ed., American Mathematical Society, Providence, RI.
  22. [22]  Davronov R.R., Jamilov, U.U., and Ladra, M. (2015), Conditional cubic stochastic operator, Journal of Difference Equations and Applications 21(12), 1163-1170.
  23. [23]  Khamraev, A.Yu. (2005), A condition for the uniqueness of a fixed point for cubic operators (Russian), Uzbek Mathematical Journal, 1, 79-87.