Skip Navigation Links
Journal of Applied Nonlinear Dynamics
Miguel A. F. Sanjuan (editor), Albert C.J. Luo (editor)
Miguel A. F. Sanjuan (editor)

Department of Physics, Universidad Rey Juan Carlos, 28933 Mostoles, Madrid, Spain


Albert C.J. Luo (editor)

Department of Mechanical and Industrial Engineering, Southern Illinois University Ed-wardsville, IL 62026-1805, USA

Fax: +1 618 650 2555 Email:

Study of Local Correlations of the Simultaneous wind Speed-irradiance Measurements Using the Time Dependent Intrinsic Correlation Method

Journal of Applied Nonlinear Dynamics 5(4) (2016) 373--390 | DOI:10.5890/JAND.2016.12.001

Rudy Calif$^{1}$, Fran¸cois Schmitt$^{2}$, Yongxiang Huang$^{3}$

$^{1}$ EA 4539, LARGE laboratoire en Géosciences et Énergies, Université des Antilles 97170 P-á-P, France

$^{2}$ UMR 8187 LOG Laboratoire d’Océanologie et de Géosciences, 28 avenue Foch, 62930 Wimereux, France

$^{3}$ State Key Lab of Marine Environmental Science College of Ocean & Earth Sciences, Xiamen University, Xiamen 361102, China

Download Full Text PDF



Renewable resources such as atmospheric wind speed and global horizontal irradiance, possess huge fluctuations over a large range of spatial and temporal scales, indicating their nonlinear and nonstationary properties. In this study, the multiple scale dynamics and the correlations between simultaneous time series are analyzed using EMD (Empirical Mode Decomposition) based methods, particularly appropriate for such time series. We consider simultaneous wind speed-global horizontal irradiance measurements, sampled at 1 hour over a period of three years, from 2010 to 2013, at Guadeloupean Archipelago (French West Indies) located at 16°15'N latitude and 60°30'W longitude. After EMD decomposition of both time series, power laws are observed in the Fourier and Hilbert spaces over a broad range of frequencies. Furthermore, we investigate their local correlations using the Time Dependent Intrinsic Correlation method (TDIC). The time evolution and the scale dependence of their correlation are determined at different time scales and for different intrinsic modes functions. The estimation of TDIC have highlighted strong correlations for all the time scales, particularly strong negative correlations between both time series for mean periods 2h≤Tm<273 days indicating a complementarity between wind speed and global horizontal irradiance for these time scales.


We thank Météo France, particularly Claude Cayol for providing the simultaneous wind speed-irradiance measurements.


  1. [1]  Calif, R. and Schmitt, F.G. (2014), Multiscaling and joint multiscaling description of the atmospheric wind speed and the aggregate power output from a wind farm, Nonlinear Proc Geophys, 21, 379-392.
  2. [2]  Calif, R., Schmitt, F.G., Huang, Y., and Soubdhan, T. (2013), Intermittency study of high frequency global solar radiation sequences under a tropical climate, Sol Energy, 98, 349-365.
  3. [3]  Yang, H., Zhou, W., Lu, L., and Fang, Z. (2008), Optimal sizing method for stand-alone hybrid solar-wind system with LPSP technology by using genetic algorithm, Sol Energy, 82, 354-367.
  4. [4]  Mohammadi M, Hosseinian SH and Gharehpetian GB. Optimization of hybrid solar energy sources/wind turbine systems integrated to utility grids as microgrid (MG) under pool/bilateral/hybrid electricity market using PSO, Sol Energy, 2012, 86, 112-125.
  5. [5]  Kayal, P. and Chanda, C.K. (2015), A multi-objective approach to integrate solar and wind energy sources with electrical distribution network, Sol Energy, 112, 397-410.
  6. [6]  Widén, J. (2011), Correlations Between Large-Scale Solar and Wind Power in a Future Scenario for Sweden, IEEE Transactions on Sustainable Energy, 2, 177-184.
  7. [7]  Santos-Alamillos, F.J., Pozo-Vásqueze, D., and Ruiz-Arias, J.A. (2012), Shi Analysis of Spatiotemporal Balancing between Wind and Solar Energy Resources in the Southern Iberian Peninsula, J. Appl. Meteorol., 51, 2005-2024.
  8. [8]  Monforti, F., Huld T. Bódis, K., Vitali, L., D'isidoro, M., and Lacal-Arántegui, R. (2015), Assessing complementarity of wind and solar resources for energy production in Italy. A Monte Carlo approach, Renew Energ, 63, 576-586.
  9. [9]  Papoulis, A. and Pillai, S.U. (2002), . Probability, random variables, and stochastic processes, Tata McGraw- Hill Education.
  10. [10]  Huang, N.E., Shen, Z., Long, S.R., Wu, M.C., Shih, H.H., Zheng, Q., Yen, N.C., Tung, C.C., and Liu, H.H. (1998), The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis, Proc. R. Soc. London, Ser. A, 454, 903-995.
  11. [11]  Chen, X., Wu, Z., and Huang, N.E. (2010), The time-dependent intrinsic correlation based on the empirical mode decomposition, Adv Adapt Data Anal., 2, 233-265.
  12. [12]  Huang, Y. and Schmitt, F.G. (2014), Time-dependent intrinsic correlation analysis of temperature and dissolved oxygen time series using empirical mode decomposition, J Marine Syst, 130, 90-10.
  13. [13]  Pope, S.B. (2000), Turbulent Flows, Cambridge University Press, 792 pages.
  14. [14]  Huang, N.E., Shen, Z., and Long, S.R. (1999), A new view of nonlinear water waves: The Hilbert Spectrum, Annu. Rev. Fluid Mech., 31(1), 417-457.
  15. [15]  Flandrin, P. and Gonçalvès, P. (2004), Empirical mode decompositions as data-driven wavelet-like expansions, Int. J. Wavelets, Multires. Info. Proc., 2 (4), 477-496.
  16. [16]  Huang, N.E., Wu, M.L., Long, S.R., Shen, S.P., Qu, W., Gloersen, P., and Fan, K.L. (2003), A confidence limit for the empirical mode decomposition and Hilbert spectral analysis, Proc. R. Soc. London, Ser. A, 459 (2037), 2317-2345.
  17. [17]  Cohen, L. (1995), Time-frequency analysis, Prentice Hall PTR Englewood Cliffs, NJ.
  18. [18]  Long, S.R., Huang, N.E., Tung, C.C., Wu, M.L., Lin, R.Q. (1995), Mollo-Christensen E, Yuan Y, The Hilbert techniques: an alternate approach for non-steady time series analysis, IEEE Geoscience and Remote Sensing Soc. Lett., 3, 6-11.
  19. [19]  Huang, N.E. and Wu, Z. (2008), A review on Hilbert-Huang transform: Method and its applications to geophysical studies, Reviews of Geophysics, 46(2).
  20. [20]  Huang, Y., Schmitt, F.G., Lu, Z., and Liu, Y. (2008), An amplitude?frequency study of turbulent scaling intermittency using Hilbert spectral analysis, Europhysics Letters, 84, 40010.
  21. [21]  Huang, Y.X., Schmitt, F.G., Lu, Z.M., and Liu, Y.L. (2008), Analyse de l'invarianc d'éhelle de séries temporelles par la décomposition modale empirique et l'analyse spectrale de Hilbert, Trait Signal, 25, 481- 492.
  22. [22]  Papadimitriou, S., Sun, J., and YU, P.S. (2006), Local correlation tracking in time series, Proc. Sixth Int. Conf. Data Mining, 456-465.
  23. [23]  Rodo, X. and Rodriguez-Arias, M.A. (2006), A new method to detect transitory signatures and local time/space variability structures in the climate system: the scale-dependent correlation analysis, Clim. Dyn., 27, 441-458.
  24. [24]  Kader, B.A. and Yaglom, A. M. (1991), Spectra and Correlation Functions of Surface-Layer Turbulence in Unstable Thermal Stratification, in O. Metais and M. Lesieur (eds.), Turbulence and Coherent Structures, Kluwer Academic Press, Dordrecht, pp. 388-412.
  25. [25]  Tchen, C.M. (1953), On the Spectrum of Energy in Turbulent Shear Flow, Journal of Research of the National Bureau of Standards, 50, 51-62.
  26. [26]  Katul, G.G. and Chu, C.R. (1998), A Theoretical and experimental investigation of energy-containing scales in the dynamic sublayer of boundary-layer flows, Bound Lay Meteorol, 86, 279-312.
  27. [27]  Katul, G.G., Porporato, A., and Nikora, V. (2012), Existence of k-1 power-law scaling in the equilibrium regions of wall-bounded turbulence explained by Heisenberg*s eddy viscosity, Phys Rev E, 86, 066311.
  28. [28]  Lovejoy, S. and Schertzer, D. (2013), The weather and climate: emergent laws and multifractal cascades, Cambridge University Press.
  29. [29]  Lave, M. and Kleissl, J. (2010), Solar variability of four sites across the state of Colorado, Renew Energ, 35(12), 2867-2873.
  30. [30]  Curtright, A.E. and Apt, J. (2008), The character of power output from utility-scale photovoltaic systems, Progr Photovoltaics, 16(3), 241-247.
  31. [31]  Marcos, J., Marroyo, L., Lorenzo, E., Alvira, D., and Izco, E. (2011), From irradiance to output power fluctuations: the PV plant as a low pass filter, Progr Photovoltaics, 19(5), 505-510.
  32. [32]  Wu, Z., Schneider, E.K., Kirtman, B.P., Sarachik, E.S., Huang, N.E. (2008), Tucker CJ. The modulated annual cycle: an alternative reference frame for climate anomalies, Clim dyn, 31(7-8), 823-841.
  33. [33]  Wu, Z., Huang, N.E., Long, S.R., Peng, C. (2007), On the trend detrending and variability of non-linear and non-stationary times series, PNAS, 104 (38), 14889.
  34. [34]  Lauren, M.K., Menabe, M., Seed, A.W., and Austin, G.L. (1999), Characterisation and simulation of the multiscaling properties of the energy-containing scales of horizontal surface layer winds, Bound Lay Meteorol, 90, 21-46.
  35. [35]  Huang, Y., Schmitt, F.G., Hermand, J.P., Fougairolles, P., Gagne, Y., Lu, Z., and Liu, Y. (2011), Arbitraryorder Hilbert spectral analysis for time series possessing scaling statistics: comparison study with detrended fluctuation analysis and Wavelet leaders, Phys. Rev. E., Clim. Dyn., , 84(1), 016208.