Skip Navigation Links
Journal of Applied Nonlinear Dynamics
Miguel A. F. Sanjuan (editor), Albert C.J. Luo (editor)
Miguel A. F. Sanjuan (editor)

Department of Physics, Universidad Rey Juan Carlos, 28933 Mostoles, Madrid, Spain


Albert C.J. Luo (editor)

Department of Mechanical and Industrial Engineering, Southern Illinois University Ed-wardsville, IL 62026-1805, USA

Fax: +1 618 650 2555 Email:

Phase Portraits, Hopf Bifurcations and Limit Cycles of the Ratio Dependent Holling-Tanner Models for Predator-prey Interactions

Journal of Applied Nonlinear Dynamics 5(3) (2016) 283--304 | DOI:10.5890/JAND.2016.09.003

M. Sivakumar; K. Balachandran

DRDO-BU-CLS, Bharathiar University, Coimbatore - 641046, India

Department of Mathematics, Bharathiar University, Coimbatore - 641046, India

Download Full Text PDF



In this paper we consider a ratio dependent Holling Tanner predator prey model with type II functional responses. We analyzed the local stability, phase portraits, existence and uniqueness of stable limit cycles and Hopf bifurcation. The ranges of the parameter involved are provided under which the unique interior equilibrium can be determined for a stable (or an unstable) node or focus without diffusion. Furthermore the Turing instability analysis of the system with diffusion are studied. Numerical simulations using MATLAB are carried out to demonstrate the theoretical results obtained.


The authors are thankful to the referees for the improvement of the paper.They are also thankful to DRDO, New Delhi for its financial support to carryout the research.


  1. [1]  May, R.M. (1973), Stability and Complexity in Model Ecosystems, Princeton University Press: Princeton.
  2. [2]  Allman, E.S. and Rhodes, J.A. (2004), Mathematical Models in Biology, An Introduction, Cambridge University Press: Cambridge.
  3. [3]  Braza, P.A. (2003), The bifurcation structure of the Holling-Tanner model for predator prey interaction using two-timings, SIAM Journal on Applied Mathematics, 63, 889-904.
  4. [4]  Holling, C.S. (1965), The functional response of predator to prey density and its role in mimicry and population regulation, Memories of the Entomological Society of Canada, 45, 5-60.
  5. [5]  Wollkind, D.J., Collings, J.B. and Logan, J.A. (1988), Metastability in a temperature-depended model system for trees, Bulletin of Mathematical Biology, 50, 379-409.
  6. [6]  Murray, J.D. (2002), Mathematical Biology I: An Introduction, Springer-Verlag: Berlin.
  7. [7]  Murray, J.D. (2002), Mathematical Biology II: Spatial Models and Biomedical Applications, Springer-Verlag: Berlin.
  8. [8]  Hsu, S.B. and Huang, T.W. (1995), Global stability for a class of predator prey system, SIAM Journal on Applied Mathematics, 55, 763–783.
  9. [9]  Gasull, A., Kooij, R.E. and Torregrosa, J. (1997), Limit cycles in the Holling-Tanner model, Publicacions Matematiques, 41, 149–167.
  10. [10]  Lan, K.Q. and Zhu, C.R. (2011), Phase portraits, Hopf bifurcations and limit cycles of the Holling-Tanner models for the predator-prey, Nonlinear Analysis Real World Applications 12, 1961–1973.
  11. [11]  Saez E. and Gonzalez-Olivares, E. (1999), Dynamics of predatorprey model, SIAM Journal on Applied Mathematics, 59, 1867–1878.
  12. [12]  Arditi, R. and Saiah, H. (1992), Empirical evidence of the role of heterogeneity in ratio-dependent consumption, Ecology, 73, 1544-1551.
  13. [13]  Arditi, R., Ginzburg, L.R. and Akcakaya, H.R. (1991), Variation in Plankton densities among lakes: A case for ratio-dependent models, American Naturalist, 138, 1287-1296.
  14. [14]  Gutierrez, A.P. (1992), The physiological basis of ratio-dependent predatorprey theory: A metabolic pool model of Nicholoson blowfies as an example, Ecology, 73, 1552-1563.
  15. [15]  Arditi, R. and Ginzburg, L.R. (1989), Coupling in predatorprey dynamics, Journal of Theoretical Biology, 139, 311-326.
  16. [16]  Arditi, R.,Perrin, N. and Saiah, H. (1991), Functional response and heterogeneities: An experiment test with cladocerans, OIKOS, 60, 69-75.
  17. [17]  Rosenzweig, M.L. (1971), Paradox of enrichment: Destabilization of exploitation ecosystems in ecological time, Science, 171, 385-387.
  18. [18]  Turing, A.M. (1952), The chemical basis of morphogenesis, Philosophical Transactions of the Royal Society of Londan. Series B, Biological Science, 237, 37-72.
  19. [19]  Banerjee, M. and Banerjee, S. ((2012), ) Turing instabilities and spatio-temporal chaos in ratio-dependent Holling-Tanner model, Mathematical Biosciences, 236, 64-76.
  20. [20]  Sivakumar, M., Sambath, M. and Balachandran, K. (2015), Stability and Hopf bifurcation analysis of a diffusive predatorprey model with Smith growth, International Journal of Biomathematics, 18, 1550013.
  21. [21]  Hassard, B.D., Kazarinoff, N.D. and Wan, Y.H. (1981), Theory and Applications of Hopf Bifurcation, Cambridge University Press: Cambridge.
  22. [22]  Hsu, S.B., Hwang, T.W. and Kuang, Y. (2001), Global analysis of theMichaelisMenten type ratio-dependent predatorprey systems, Journal of Mathematical Biology, 42, 489-506.
  23. [23]  Jost, C., Arino, O. and Arditi, R. (1999), About deterministic extinction in ratio-dependent predatorprey model, Bulletin of Mathematical Biology, 61, 19-32.
  24. [24]  Kuang, Y. (1999), Rich dynamics of Gause-type ratio-dependent predatorprey systems, Fields Institute Communications, 21, 325-337.
  25. [25]  Kuang, Y. and Beretta, E. (1999), Global qualitative analysis of ratio-dependent predatorprey system, Journal of Mathematical Biology, 21, 325-337.
  26. [26]  Liao, M., Tang, X. and Xu, C. (2011), Stability and instability analysis for a ratio-dependent predator-prey system with diffusion effects, Nonlinear Analysis Real World Applications, 12, 1616-1626.
  27. [27]  Pielou, E.C. (1969), An Introduction to Mathematical Ecology, Wiley: New York.
  28. [28]  Sambath, M., Gnanavel, S. and Balachandran, K. (2013), Stability and Hopf bifurcation analysis of diffusive predator saturation and competition, Applicable Analysis, 92, 2451-2468.
  29. [29]  Sambath, M. and Balachandran, K. (2015), Influence of diffusion on bio-chemical reaction of the morphogenesis process, Journal of Applied nonlinear Dynamics , 4, 181-195.
  30. [30]  Wang, J. and Qu, X. (2011), Qualitative analysis for a ratio-dependent predatorprey model with disease and diffusion, Applied Mathematics and Computation, 217, 9933-9947.
  31. [31]  Wang, J., Zhan, X., Shi, J. and Wang, Y. (2014), Profile of the unique limit cycle in a class of general predatorprey systems, Applied Mathematics and Computation, 242, 397-406.
  32. [32]  Zhang, J.F., Li, W.T. and Yan, X.P. (2011), Hopf bifurcation in a predator-prey system with Beddington-De Angelis response, Acta Applicandae Mathematicae, 115, 91-104.
  33. [33]  Perko, L. (1996), Differential Equations and Dynamical Systems, Springer-Verlag: New York.
  34. [34]  Andronov, A.A., Leontovich, E.A. and Gordan, I.I. (1971), Theory of Dynamical Systems on a Plane, Israel Program for a Scientific Transactions, Jerusalem.